SCIEX7500システム
微量濃度のPFAS化合物の究極定量には、SCIEX 7500システムが最適です。感度の向上により、サンプル前処理における濃縮ステップの必要性が減少します。
ペルおよびパーフルオロアルキル化合物(PFAS)の分析は、今や世界中の多くの環境ラボで日常的に行われている検査です。 環境サンプル中のPFAS化合物を幅広く測定するには、1兆分の1レベル(ppq)で高感度に定量ができ、メソッド全体を通して汚染の弊害がなく、注入毎に一貫性があり、正確で信頼性の高い結果が得られる、エンド・ツー・エンドのワークフローが求められます。
飲料水、原水、土壌のPFAS検査の需要は拡大しています。PFASの分析のニーズは、環境分析の一般的なマトリックスから、食品、動物組織、ヒトの体液へと移行しつつあります。したがって、ラボが実施する分析の種類に応じて、選択するワークフローは、PFASのさまざまなサンプルタイプを分析するために適応可能で堅牢である必要があります。
2022年6月、EPAは、飲料水中のPFASに関する一連の新しい勧告レベルを発表しました* 小規模または不利なコミュニティにおける新興汚染物質(EC)助成金(SDC)| USEPA。SCIEXのPFAS専門家は、業界のリーダーと緊密に協力し、高感度な液体クロマトグラフ質量分析装置(LC-MS / MS)を用いて、これらの要件に対応するワークフローを開発しました。
また、欧州化学物質庁(ECHA)は、この化学物質群を含む広範な市販製品を対象とする普遍的なPFAS規制案と、一般的なガイダンスの実施スケジュールを発表しました。
これらのPFASワークフローは、パーフルオロオクタン酸(PFOA)、パーフルオロオクタンスルホン酸(PFOS)、GenX 化学物質、パーフルオロブタンスルホン酸(PFBS)などの主要な化合物の微量レベルの検出と定量を必要とします。SCIEXは、規制要件に対応するために必要なPFAS分析ソリューションと、お客様の技術予算に合わせたパッケージを提供します。
PFASライフサイクルのダウンロード微量濃度のPFAS化合物の究極定量には、SCIEX 7500システムが最適です。感度の向上により、サンプル前処理における濃縮ステップの必要性が減少します。
環境中には何千種類ものPFAS化合物が存在し、材料は日常生活のあらゆる側面で使用されています。SCIEX 7600システムは、新たな対象化合物の検出と特性解析を行う包括的な探索ワークフローを提供します。
この検証済みライブラリには、環境サンプルで一般的にテストされる96のフルオロケミカルとその代謝物のスペクトルが含まれており、複雑なサンプルのターゲットおよびノンターゲットスクリーニング用のメソッドとプロセスを簡単に作成できます。(v2.0には約250の化合物が含まれ、多くのAFFF由来の化合物が追加されています)
テクニカルノート
このメソッドでは、26種のPFAS化合物について、希釈液中のLOD値が0.2 ng/L、飲料水、地下水、地表水中のメソッド検出限界の計算値は0.06 ng/Lから1.12 ng/Lの範囲となり、1兆分の1(ppt)以下の検出レベルを達成しました。
テクニカルノート
SCIEX 7500システムによるPFASの超微量分析のための装置感度とサンプル前処理の共同研究。
データギャラリー
優れたリニアダイナミックレンジで2ng / Lのレポート下限を達成し、EPA 533およびUCMR5の要求事項を満たします。
EPAメソッド537.1ガイドラインに基づき、飲料水中の14種類のPFAS化合物をわずか10分で検出
液体クロマトグラフィー質量分析計を使用して水中のPFASとGenXの特性評価と定量を行い、規制値を満たします。
飲料水中の微量PFASを迅速、堅牢かつ正確に定量するために必要なツールとプロトコルを入手できます。
PFASおよびGenX化合物を確実に検出、定量、同定するための入門編ガイドがダウンロードできます。
液体クロマトグラフィー-タンデム質量分析(LC-MS / MS)技術は、飲料水、廃水、および土壌中の既知および未知のポリおよびペルフルオロアルキル化合物(PFAS)を検査するための分析科学への道を開きます。LC-MS/MSの感度と頑健性は、これらのユビキタスで難分解性の汚染物質を定量的に分析するのに理想的な選択肢です。
PFASは、ペルフルオロオクタン酸(PFOA)やペルフルオロオクタンスルホン酸(PFOS)などの合成化学物質の一群を指します。3,000種類以上のPFASが人間の健康と環境を脅かしており、PFAS検査は重要です。これらの化学物質は、水性フィルム形成フォーム(AFFF)、こびりつきにくい台所用品、水や油脂に強い接着剤などの製品の表面を作るために、1940年代から商業生産されてきました。
PFAS分析に関しては、システム汚染の可能性を最小限に抑えつつ、水、土壌、さらには食品などさまざまなマトリックス中の微量濃度のPFASをうまく測定するベストプラクティスを採用することが重要です。
LC-MS / MSは、次の理由により、環境サンプル中のPFASモニタリングに最適です。
LC-MS/MSは、PFASの検出、定量、そして理解への道を大きく変えました。SCIEX は、お客さまのラボが大量のサンプルと差し迫った期限という課題に直面しており、信頼性の低い機器システムは容認できないことを理解しています。ラボが新しいPFASを特定する必要がある場合でも、定期的に定量する必要がある場合でも、SCIEXのLC-MS/MSソリューションを使用したPFASテストは、生産性を最大限に高め、必要な高品質のデータを一貫して提供します。
グループ会社のPhenomenexは、積層固相抽出ソリューションから最適化されたLCカラムPFASセクションまで、PFASテストに必要なすべての消耗品とリソースを提供します。
Phenomenexが提供するPFASリソースをご覧ください:
リソース
Because of the pervasive nature of PFAS and the suggested PFAS detection limits continuingly being decreased in environmental sample analysis, there is an increasing need to have LC-MS strategies that can effectively manage PFAS background. Here, a workflow was established on the ExionLC 2.0 system with the optional wash system using delay columns to separate background PFAS contamination from sample analysis. An assay for 52 PFAS analytes was used to characterize the performance attributes of the LC system, including carryover. Analysis was performed using the SCIEX Triple Quad 7500 system to obtain very high sensitivity.
Per- and polyfluoroalkyl substances (PFAS) have excellent stain repellent properties and are thus widely used in packaging materials, firefighting foams and many other uses. As PFAS have been found in virtually every environmental matrix including drinking water supplies, making monitoring critical to ensure safety. Here, a comprehensive quantitative method for a suite of PFAS compounds was developed for analysis of water samples on the SCIEX 7500 system. This high sensitivity system provided S/N gains of ~5.5x on average across the 54 compounds analyzed versus the SCIEX 6500+ system..
Co-eluting interferences in biological matrices have been shown for PFOS and PFHxS when monitoring the [SO3]- fragment ion. Here, accurate mass spectrometry was used to mass resolve PFOS & PFHxS from these interferences. The separation used was able to chromatographically resolve the interferences using a 6.5 minute gradient. The interferences were then characterized using their MS/MS fragmentation spectra and library searching.
PFAS drinking water analysis by EPA Method 5331 using the SCIEX 5500+ System. Excellent sensitivity and precision were as shown; the “in-sample” minimum reporting limits were 2 ng/L for all analytes except PFHpA which was 4 ng/L. Novel perfluorinated ether carboxylic and sulfonic acids were detected in 0.50 ng/mL standard, which corresponds to 2 ng/L in sample, significantly below the US EPA drinking water guidelines of 70 ng/L for PFOS and PFOA. Custom built calculations and flagging rules in SCIEX OS Software streamlined data review and report generation.
Per- and polyfluorinated alkyl substances (PFAS) are a group of manmade chemicals that are known to enter the water supply and bioaccumulate in watershed ecosystems. Hence, the US EPA published the fifth unregulated contaminant monitoring rule (UCMR5)5, which proposes maximum residue limits (MRL) for PFAS residues in EPA method 533. A method has been developed here using solid phase extraction (SPE) and the SCIEX Triple Quad 4500 system monitoring 22 different PFAS species. Observed sensitivity and reproducibility meets the UCMR5 requirements for EPA method 533 compounds.
In this technical note, the SCIEX X500 QTOF system was used to analyze PFAS in human serum. An unbiased and non-targeted workflow with automatic library matching allowed for wider, comprehensive sample analysis. Additionally, a streamlined sample preparation strategy maintained sample integrity while providing greater laboratory efficiency.
Poly- and perfluoroalkyl substances (PFAS) are widely used and are now broadly detected in the environment. There are an estimated 5,000 unique PFAS manufactured making determination of the specific PFAS compound challenging. Structural assignment depends on obtaining high quality MS/MS spectra, but traditional collision-induced dissociation (CID) do not always yield enough information to provide definitive assignment. Here , electron activated dissociation (EAD) has been evaluated to determine whether this orthogonal fragmentation mode can improve qualitative PFAS structure elucidation.
GenX is a replacement chemical for PFOA and increasingly high levels of GenX contamination in the environment near manufacturing plants is being reported. HRMS is important in monitoring these novel PFAS compounds in complex matrices due to the additional selectivity possible. Here, a targeted method for the detection of perfluoroalkyl ether carboxylic acids (PFECAs), including GenX (HFPO-DA) and shorter-chain analogues, in water and sediment samples was developed using the SCIEX X500 QTOF system. Low to mid parts-per-trillion detection limits with enhanced selectivity were obtained.
In order to protect the safety of drinking water and human health, the EPA releases methods for the detection of contaminants. The EPA method 537.1 describes the detection of selected per- and polyfluorinated alkyl substances in drinking water. Here a robust LC-MRM assay was developed using the QTRAP 4500 system for PFAS detection. Sensitive MDLs of 0.08-0.2 ng/L for all of 14 PFAS compounds in EPA method 537 were achieved, all of which meet or exceed the requirements of the US EPA’s UCMR3 list in a 10 minute run.
This technical note describes two methods for the quantitation of per- and polyfluorinated alkyl substances (PFASs) in water samples. Both methods achieved accurate quantitation at levels of approximately 1-10 ng/L for more than 17 PFASs. Method 1 is compatibility with EPA Method 537.
PFAS are widely used in plastic packaging materials for food and as coating in non-stick pans. MRMHR quantification enables detection and quantification of PFAS to meet EU regulation, national standards in China.
Gen-X is an emerging polyfluorinated alkyl substance, hexafluoroprolyene oxide (HFPO-DA), and it with other novel PFAS is shown as part of a multi-component PFAS acquisition method. Gen-X and several PFOS-replacement compounds were optimized on the SCIEX Triple Quad 4500 System.
Currently there are more than 3000 Per- and Poly- fluorinated substance (PFAS) products that were or are available on the global market. Changing regulations and concern for human environmental impact make detection and identification of PFAS a high priority for many environmental testing laboratories. Many of these products may be not well understood or well characterized, and analytical grade standards are often unavailable, limiting the comprehensibility of targeted methods. Therefore, many laboratories have included suspect screening workflows in their routine analysis. Suspect screening allows laboratories to search against a spectral library or database of characterized compounds without the need of authentic standards, saving time and allowing for a more comprehensive characterization of environmental samples.
An accurate and robust LC-MRM method using a smaller volume direct injection approach has been developed on the QTRAP 6500+ system, with sensitivity demonstrated to easily meet the current recommended limits set by the European authorities for drinking water (February 2020). Several PFAS specific analytical challenges have been addressed with this method, ensuring the method is easily implemented into labs. Data was also generated on the SCIEX 7500 system to highlight the advantages of increased sensitivity.
Here, a comprehensive workflow using the SCIEX QTRAP 6500+ System for the analysis of 22 PFASs in serum is presented. This targeted screening workflow is shown to provide a fast, robust and sensitive analytical method capable of accurately quantifying sub-nanogram per mL levels of PFASs in human serum. Here, a comprehensive workflow using the SCIEX QTRAP 6500+ System for the analysis of 22 PFASs in serum is presented. This targeted screening workflow is shown to provide a fast, robust and sensitive analytical method capable of accurately quantifying sub-nanogram per mL levels of PFASs in human serum.
In this method sub-parts per trillion (ppt) levels of detection for 26 PFAS compounds was achieved with LOD values of 0.2 ng/L in diluent and calculated method detection limits in drinking, ground, and surface water ranging between 0.06 ng/L and 1.12 ng/L
PFAS quantification at trace levels (parts per trillion) can routinely be achieved by sensitivity triple quad mass spectrometers. PFAS, PFOA, PFOS, GenX, etc can be detected and measured with high precision. A large proportion of PFAS ‘unknowns’ exist in human serum however, and required advanced accurate mass workflows with QTOFs to identify the unknowns. Targeted serum analysis coupled with high resolution MRM quantification and non-targeted acquisition with suspect screening enables compound identification as well as fragmentation specificity. Watch this video series to discover how you can Find PFAS in People
Bioaccumulation of PFAS in the human body resulting from environmental exposure is a growing public health concern. Recent studies have linked PFAS exposure to adverse health outcomes, including childhood health complications, reduction in kidney functions, thyroid disease, hormone suppression, decreased fertility, increased cholesterol levels, and diabetes, among others.
This collaborative technical note demonstrated the ability to meet the ultra-trace levels of detection required for the 2022 EPA drinking water health advisory levels for PFAS. Future experiments will include an MDL study at the 4 and 20 ppq (pg/L) spiking levels for PFOA and PFOS, respectively.
In this technical note, a method is presented for quantifying per-and polyfluoroalkyl compounds (PFAS) in seawater at the low ng/L range using a simple sample preparation approach, with no solid phase extraction (SPE). The sensitivity of the SCIEX 7500 system1 allowed for the ultra-trace level quantification of PFAS in un-spiked seawater samples using only direct injection analysis
No resources found.
SCIEXは、エネルギー効率を高め、再生可能エネルギーシステムを導入し、資源を無期限に再利用する循環型廃棄物モデルを通じて廃棄物を最小限に抑えることにより、事業の環境への影響を減らすことを目指しています。研究開発とサービス部門は、グローバルな製造部門全体で徹底したサステナビリティへの取り組みを通じて、これを達成することを目指しています。詳細はこちら:
SCIEXのサステナビリティ