Drug Discovery and Development

BioPharmaView™ 3.0 软件在精简的MAM流程中的应用

Zoe Zhang², Fan Zhang², Sean McCarthy¹

¹ SCIEX Framingham, MA (USA), ² SCIEX Redwood City, CA (USA)

生物制药的开发和生产过程非常复杂,即使是微量杂质,或诸 如糖基化及电荷异质性等属性的变化,也会对最终产品的安全性和 功效产生重要的影响。传统方法通常需要多种分析技术来评估生物 制药产品的所有属性,但其必然带来更多时间和资源的支出。

多属性方法学(MAM)是一种基于肽图分离与高分辨率质谱 联用的正交方法,正迅速成为表征和监测生物制药属性的有力工 具。利用此方法可对广泛的属性范围进行监测。 MAM可用于评 估,跟踪和提供肽段水平上多种特定生物产品质量属性的详细数据 (图1)。除了跟踪制剂分子本身之外,MAM还可用于检测与生物 制剂生产相关的已知杂质,以及样品中未知的、不存在相应标准的 杂质(新峰)。

MAM工作流程成功实现的关键是可对工作流程所有方面进 行管理的软件,包括:产品质量属性(PQA)定义,跟踪和量 化;检测已知和未知杂质,以及产出报告。本文描述了SCIEX BioPharmaView™ 3.0软件在MAM工作流程管理中的应用。 BioPharmaView™软件可以在一个项目中管理MAM工作流程的所有 方面,消除了使多个软件包带来的不必要的复杂性。

主要特点

- 除传统的核心表征工作流程外,BioPharmaView™软件还为 MAM工作流程提供单一软件解决方案,例如完整质量分析,亚 基分析和肽谱分析
- 可在单个平台上创建简单方法
- 强大的产品表征,属性定义和跟踪及定量能力
- 根据特定用户需求,灵活地进行属性评估的自定义计算
- 可靠地检测和监测指定和未指定的杂质
- 诊断目标属性产出简明的审查和报告

生物制剂PQA评价	LC-MS MAM流程	SEC	CEX	CE-SDS	HILIC	ELISA
脱酰胺化						
糖化						
高甘露糖型						
单肽段						
糖基化						
CDR色氨酸降解						
C-端赖氨酸缺失						
错误插入						
C端酰胺化						
岩藻糖基化						
残余蛋白A						
宿主细胞蛋白						
聚集						
半胱氨酸加合物评价						

SCIE

图1. 传统测定与精确质量LC-MS MAM测定对一组选定的生物治疗属性的比较。

方法创建

在BioPharmaView™软件中创建多属性分析非常简便。 MAM 分析从目标蛋白质序列的定义开始。如果目标蛋白具有多个 链,则需如图2所示单独定义。添加已知的二硫键和可能存在 的任何修饰,将其定位于序列内的特定氨基酸上。 未包含在 BioPharmaView™软件中的修饰可在设置中轻松自定义添加,并应 用于所有BioPharmaView™项目中。

除了目标蛋白序列之外,也可输入任何已知的杂质序列可作为 靶向肽或蛋白质序列。使用为目标蛋白定义的参数,在计算机模拟 消化时可将杂质序列进行相同的处理。在整个工作流程中,杂质序 列也会被搜索和呈现,以便于与目标蛋白区分。

	Sequence												
rotein Type	e Antibody	¥ A00	Chain Urm	odified Prot	er MW	4							
			Mon	electopic 7	2609.15	12 Averag	o: 72734.32						
Chain 1													-
	AA Indesei												Delote Chair
114-220	6 TTVTVS	ASTROPSVFPL PADELLOGPSVF	APOSKSTOGGT LEDDKDKD7LN	AALGCLVI	CVVVI	PVTVOMNO VSHEDPEV	ADIWWDDRAHYN GALTOGVHTPPA YEPWYYDGVEVR DENNYRTPPYL	VLQSSGLYSLSS NAFTEPRESOTS	WVIVF33	PLOTOT VLTVLB	DWINGE	RPONTEV EYRCEVE	EPRVEPROCES NEALPADIEE
Chain 2	101												
	AA Indexe	e											Deine Chair
1-111	DIONTO	IPOPLOAGWORD	OPTTCALAGEN	CVPERMON	OF DOPA	PHILITYPE	SKLASCVFORFS	OBCOOTEPTLT:	RELOFER	PATYYC	noceave	PTPOGOT	EVETKREVAAL
Chain	Deport.	Sequence										1.000	Add. Dele
	Name						and the second second						Notes
Chain												901 🖌	
1 Chain			KINERATAWARDOGO MEGISFIRGI HENDARG		1.000					accrew	NEWSON		
,	(CON)				1890		THERE WERE		soge				
a a a a a a a a a a a a a a a a a a a	iona	ACIONERI KAD	ROSERCE RESORCE		NIRSYO			копкронскакти	Disulfide	Borids -	מ		
a a a a a a a a a a a a a a a a a a a	iona		ROSERCE RESORCE	LROMMO P	0.83404				Disulfide	Borids -	Ø	ans.	Add. Diliti
a Andificati	iona	ACIONERI KAD	ROSERCE RESORCE	Maximum Mods per	Modi	i Rivowoł		копкронскакти	Disulfide	Borids - Esport Te	From Cysteine	To Cysteise	Add. Dilen
1 Dedificati	ion) ene Modific ni Type	ations Can Replace	e Davilide Bonds	Maximum Mods per Chain	Modi AA	Applies To	Workflow Usage	still Delete Mass Shift	Disulfide Import 1 From Chair	Torids Torids To Chain 1 1	7) From Cysteine 264	To Cysteine 324	Add. Delet
1 dodificati Cyste Chair 1	iom ene Modific ns Type -2 internal	ations Can Replace Name Otidation	e Davilide Bonds	Maximum Mods per Chala 10	Modi AA	Applies To	Workflow Usage Both	Mass Shift 13.9949	Disulfide Import In From Chair 1 2	To Chain 1 1 1 1	From Cysteine 264 170	To Cysteine 324 438	AM. Die
Andificati Cyste Chain 1 1 2 1	iom ene Modific ns Type -2 internal -2 internal	ations Can Replace Name Osidation Deamidated	e Davilide Bonds	Maximum Mods per Chain	Modi AA n/a n/a	Applies To M	Workflow Urage Soth Repride Mapping	Mass Shift 13.9949 0.9840	SKQC Disulfide Import 15 From 2 1 2 3	Terrorit Te Chain 1 1 1 1	From Cysteine 264 370 147	To Cysteine 324 428 203	Add. Denies
1 Oraclificati Cyste Chair 1 1 2 1 3	iom ever Modific ns Type -2 internal -2 internal 1 Notembra	Account acts ations Can Replace Name Oridation Deamidated C Chargene Acts	e Daulfide Bonds Fooltion	Maximum Mods per Chain 10 10	Modi AA n/a n/a	Applies To M NQ	Workflow Urage Both Repride Mapping Loch	Controlow accord SL. Deleta Mass Shift 13.9949 0.9840 -17.0263	Disulfide Prost Chair 1 2 3 4	Torids - Torids - To Chain 1 1 1 1 1 1 1 1 1 1	7) From Cysteine 264 370 147 22	To Cysteise 324 438 203 97	Add. Britt
1 Cyste Chale 1 1 2 1 3 4	iom ene Modific ns Type -2 internal -2 internal	ations Can Replace Name Osidation Deamidated	e Davilide Bonds	Maximum Mode per Chain 10 10	Modi AA n/a n/a	Applies To M	Workflow Duge Soth Reptide Mapping Soth Peptide Mapping	Mass Shift 13.9949 0.9840	SKQC Disulfide Import 15 From 2 1 2 3	Terrorit Te Chain 1 1 1 1	7 From Cysteine 264 170 147 22 223	To Cysteine 324 438 202 97 213	Add. Delett
Andificati Cyste Chain 1 1 2 1 3 4 3	iono ever Modifica na Type -2 internal -2 internal Netrenal 1 internal	Account (1995) ations Can Replace Name Olidation Deamidated (Intropyro-GA) G0-HeshSke	e Daulide Donds Position	Moderum Mode per Chain 10 10	Modi AA n/a n/a N N N	Applies To M NQ Q N	Workflow Urage Both Repride Mapping Loch	55. Deleta. Marc Shift 13.9949 0.9940 -17.0363 1025.2966	Disulfide Prost Chair 1 2 3 4	Torids - Torids - To Chain 1 1 1 1 1 1 1 1 1 1	7) From Cysteine 264 370 147 22	To Cysteise 324 438 203 97	Add. Brief

图2. BioPharmaView™软件中蛋白质序列,二硫键和修饰的定义。

进一步完成分析信息(Assay information)需要设置一系列内 置的半胱氨酸烷基化试剂和消化酶等消化参数,以及在数据中搜索 时的最大修饰数目和漏切数目,如图3所示。

Assay Information	1	Sequence Features	Intact Protein	Peptide Mapping	Quality Attributes	Batch Parameters			
Processing Parc. m/z tolerance: Minimum Score fo MS/MS Matching New Peak Detec Riag New Pea XIC Area: Relative XIC Fail Sample Annotated Prof	r Auto-Validat folerance: ttion ks ≥ 4.0 C Area: ≥ if New Peaks	0.03 Da 1064 % of Sola s Found	Start	inge Processing: Auti RT: N/A min RT: N/A min	ematic	Retention Time Tolerance: ± 0.50 Batch Processing Pass / Fail C XC Area Limits: Minimum Sequence Coverage Required Form Maximum: Restricted Form Maximum: Fail Sample if Impurity Found	riter ± [2 2	10.0	N N N
• Peptide Mappi									
Cysteine Alkylation:	lodoacetic a	cid 💙	Maximum Numb	er of Combined Mo	difications per Peptid	Se 4			
Digest Agent:	Trypsin	~	Maximum Misse	d Cleavages: 2	*				

图3. 搜索参数的定义和批量分析中新峰检测标准的定义。

描述

使用以上所定义的分析信息,提交质谱产出的数据进行处理, BioPharmaView™软件即可自动对样品进行表征。基于已定义的搜 索参数,通过MS和MS/MS数据的关联进行肽段的匹配。处理完成 后即可在单一界面轻松查看肽图结果。为了加快结果分析,可以使 用各种可用的过滤条件轻松地对结果进行排序。

已定义的肽段修饰在肽图结果中可自动注释,并且在结果分析 中可方便地进行筛选。在修饰无自动定位的情况下,可根据处理的 数据中预填充评分结果来指导修饰位置的分配。修改完成后,定位 信息将用于正在进行的研究中。表征完成后,更新的分析信息可用 于批量分析。

属性定义

在BioPharmaView™软件中可以轻松定义目标属性,如图4所 示。在表征中使用相同的过滤标准,可以在肽集中编译目标属性。 每个属性都在其所在的肽集中捕获,该肽集包含与定义的过滤条件 匹配的所有数据。属性肽集可被命名,并可在项目内和项目之间共 享。共享肽集可减少定义分析所需的总时间,并可减少定义肽集时 的变异性。

使用定义的肽集,可根据高度灵活的自定义计算引擎计算属性 水平。自定义计算可使用户能够自行确定每个属性级别,如图4所 示。定义每个属性后,计算值将添加分析中,展示在同一个表内。 可定义或监测的属性数量没有实际限制,提供了同时监测大量属性 的灵活性。

	Attribute		Value	Name: C	61			alculated Valu	6.00%	V V 3	perioda	+ Arsent Fue	1000	Arrier 1.5
		PLATE	40.09 %	1 Contractor										
1 00P			45.66 %	SUM	(G2F)/50	M Tota	Glycoper	tide						
1 44		_	45.00%											
	n-glycosylati		0.79%									Edit.	A56.	Deteto
6 NOR		60	0.10%		_									
	iq 100F		0.12 %		G2F 🗙	< lotal.chyc.	×							
7 M3	ig10,0+		0.12%		Lister Chain	Fector	AA INSK 14	normal a		MODELEDAR		Tel 1	10100	
7 NO 8 A10	test .		1.53%	1 182	nusage Chain			streete				Derite	Se Ronda	
a A10			1.53 %	1.5	terera 1	726	296-354 882	NT2CTVR		0.1108-01001				
	SIMAL		0.69%						_				-	-
	11/1547		0.89%	Peptide	Set Query								Add	Delate
0 A30			0.20%	UM	Column		Value							
	alot#		1.15%		Sequence		"EEQVINISTVR"							
A ADO			0.24%	2	 Modificati 	oes.	102F@5(3001							
	a101+		0.00%		Use for Q		"Use" Unknown							
6 A20			0.51%	100	Retention		8.07							
			0.00%		Charge									
7 Mar			0.00%	-	in the second									
eptid	les -					140					Popula	ta Query (C)	tor Query	12
	itch Usige	chairs	Peptide	AA Index	Sequence	Nodificatio	ns	Use for Quark	Use for ID	Mono. Mass	Matched	Mono. m/z	Charge	XUC AN
4	Optional	3	/721-23	190-198	SKENFSKOK			Unknown	Unknown	1143 5024	~	572.8035	2	1.
5	Optional	2	T17-19	188-210	HKYNACEVTH_	Carboxymet	v1@6(193)	Unknown	Unknown	2645.3020	V	1323.6583	2	1.
6	Optional	2	T17-18	199-206	HKYNACEVTH	Carbox,met	v106(193)	Unknown	Unknown	2141.0575	1	429.2188	5	2
7	Optional	2	117-18	188-206	HOUSEDATH-	Carboxymeth	1/10/01/19/3	Use	Use	2141.0575	~	586.2717	4	5.
8	Optional	2	T17-18	103-206	HOMACENTH	Carboxymeth	v/@6(193)	Use	Use	2141.0575	~	714.6931	3	5
	Optonal	2	T16-18	183-206	ADVERSHKV//2C	Carboxymat	vi@11(193), Deamin	Unknown	Unknown	2748.3065	5	550 6685	5	4
0				103-206			vip11(193)	Unknown	Unknown	2747.1225	~	550.4718	5	6.

图4. BioPharmaView™软件中质量属性和自定义计算的定义。

对于分析中定义的每个属性,接受标准同样也被定义了。每个 计算出的属性响应的可接受值范围都是独立定义的。此范围可基于 与定义值的百分比偏差来设置,或者根据需要设置为大于/小于特 定值,定义的范围用于确定其相应属性的总体处于通过/未通过状 态。

属性量化

在BioPharmaView™软件中提交批量处理,可跟踪提交的一组 样品中所定义的属性。 批量处理可以对TOF-MS数据或SWATH[®]采 集数据进行分析。通过为每个样品中所有可检测的组分生成MS和 MS/MS数据,SWATH[®]采集模式可提供更多细节。 SWATH[®]采集模 式提供的更多的二级数据,可以对检测到的新组分进行识别,而无 需重新分析。

处理一批包括两个或更多数据文件可以对同批处理的样品进行 比较。对于分析中的每个选定属性,将在"Attribute"选项卡中显 示简明摘要。此选项卡概述了每个样本中计算出的属性水平,通过 /失败标识以及属性是否通过的范围(图5)。

每个属性可以被单独选择以查看每次计算中应用的基础数据。 在肽段结果中选择鉴定的肽段可显示相关的MS和MS/MS(如果采 集到)的视图。匹配到但没有包括在属性方法中的肽段数据显示在 "Matched"选项卡中。通过此功能可单独对多个样品或对两个甚 至更多个样品之间的比较进行分析研究。

图5. 在BioPharmaView™软件中查看批量分析结果。已定义属性的结果展示在页面中,包括通过/失败标识以及接受范围。可以在同一窗口中轻松访问质谱数据。

监测已知杂质

若在分析中进行了定义,已知的杂质结果将会呈现在肽图结果 的"Impurities"选项卡中(图6),与定义的目标蛋白是分开的。 每种杂质都清楚地用不同的命名法表示,并指出哪些肽段被鉴定了 出来。

新峰检测

如果在分析中选择了此功能,BioPharmaView™软件即可在批 量分析时进行新峰(未知杂质)检测。新峰检测是通过将每个样品 与对照进行比较进行的。重要的是,对照和样品应在同一研究中进 行制备和分析,以解释样品制备中的变异性。新峰检测应根据当前 表征工作的指导来定义检测阈值,阈值可以根据绝对或相对信号强 度来定义(图3)。如果检测到新峰,即使所有其他属性参数都通 过,样本也可能会自动认定为失败。

0	en Bato	th Res	ults New	Peak Detection	8								
	View		Туре	Filename		Sa #	E	# Unique Peptides	# Impurities	# Newly Detected	% Sequence Coverage	Pass/Marginal/Fail	
1		1	Control	20180213_1	vist_tr	1	1	151	1		- 97.6		Pass
2	\checkmark	2	Sample	20180213 #	vist tr	1	1	151	1	1	2 97.0		Fail
	-												
ep	tide R	esult	Matched	Unmatched	Imps		04	ality Attribut	tes		Filte	r View Sequence	•
ep	tide R		8 Matched	Unmatched	Impu	urities Rate	<u> </u>	ality Attribut				r View Sequence	•
ep			8 Matched	Unmatched	Imp.	urities Batu Usa	h	ality Attribut Auto- Validated	Review	Chains		r View Sequence	•
	tide Re Filenan	ne	Matched			Bat	h ge	Auto-	Review		Peptide Se	-	

图6. 检测定义的杂质。杂质信息显示在在单独的选项卡中,并清楚地标记 为杂质。

在批量处理分析中执行新峰检测时,必须将其中一个数据文件 定义为对照,对照样品用作其他样品进行比较时的基准。通常对照 样品是先前已经被表征并且充分了解的样品。

新峰检测的结果在批量处理结果中进行了简明摘要显示。如图 7所示,结果中列出了每个样品的肽段总数,以及检测到的杂质, 还提供了检测到的新峰数量。

如果需要进一步研究新峰,则可以方便地过滤肽段结果,仅 显示标记为新检测到的组分。有关新峰的详细信息,可以选中每个 峰,并查看其相应的MS和MS/MS谱图。如果是在之前的表征工作 中已检测到的新峰,或者不是特定关注的峰,则可轻松地改变其标 注。更改新峰的状态需要提供更改的理由,该理由也被作为分析的 一部分。检测到新峰也会导致样品自动失败,显示为红点,如图7 所示。

Open Batch Results Ne	w Peak Detection								
View Type	Filename	Sa		Unique Peptides	Impurities	# Newly Detected	% Sequence Coverage	Pass/Marginal/	Fail
1 1 Control	20180213_Nist_	tr 1	1	151	1		97.6		Pass
2 🗸 2 Sample	20180213_Nist_	81	1	151	1	12	97.0		Fail
Filename			Charge	Observe			XIC Area	Newly 👳	Details
+ 20180212 Nict tous 200	CNATHO2 witt2			Mono m	VZ ····	15.00		Detected	Detans
1 20180213_Nist_tryp_2ug_ 2 20180213_Nist_tryp_2ug_		2		2 475.17	V z 718	15.00	4.50e4	Yes	Decano
2 20180213_Nist_tryp_2ug_	SWATH02.wiff2	2		2 475.17 2 645.34	VZ 718 450	15.21	4.50e4 4.20e4	Ves Ves	U-Curry -
2 20180213_Nist_tryp_2ug_ 3 20180213_Nist_tryp_2ug_	SWATH02.wiff2 SWATH02.wiff2	2		2 475.17 2 645.34 1 711.30	VZ 718 450 069	15.21 24.86	4.50e4 4.20e4 5.66e4	Ves Ves Ves	Decision -
2 20180213_Nist_tryp_2ug_	SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2	2		2 475.17 2 645.34 1 711.30	VZ 718 450 069 296	15.21	4.50e4 4.20e4 5.66e4 6.60e4	Ves Ves Ves Ves	
2 20180213_Nist_tryp_2ug 3 20180213_Nist_tryp_2ug 4 20180213_Nist_tryp_2ug	SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2	2 2 2		2 475.17 2 645.34 1 711.30 6 1123.22	VZ 718 450 069 296 509	15.21 24.86 48.33	4.50e4 4.20e4 5.66e4 6.60e4 4.29e4	Ves Ves Ves Ves Ves	
2 20180213_Nist_tryp_2ug 3 20180213_Nist_tryp_2ug 4 20180213_Nist_tryp_2ug 5 20180213_Nist_tryp_2ug	SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2	2 2 2 2 2		2 475.17 2 645.34 1 711.30 6 1123.22 1 1241.93	VZ 718 450 069 296 509 195	15.21 24.86 48.33 46.76	4.50e4 4.20e4 5.66e4 6.60e4 4.29e4 1.26e5	Ves Ves Ves Ves Ves Ves	
2 20180213_Nist_tryp_2ug, 3 20180213_Nist_tryp_2ug, 4 20180213_Nist_tryp_2ug, 5 20180213_Nist_tryp_2ug, 6 20180213_Nist_tryp_2ug,	SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2	2 2 2 2 2 2 2		2 475.11 2 645.34 1 711.30 6 1123.23 1 1241.93 2 1272.81	VZ 718 450 069 296 509 195 737	15.21 24.86 48.33 46.76 30.03	4.50e4 4.20e4 5.66e4 6.60e4 4.29e4 1.26e5 4.93e4	Ves Ves Ves Ves Ves Ves Ves	
2 20180213_Nist_tryp_2ug, 3 20180213_Nist_tryp_2ug, 4 20180213_Nist_tryp_2ug, 5 20180213_Nist_tryp_2ug, 6 20180213_Nist_tryp_2ug, 7 20180213_Nist_tryp_2ug,	SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2 SWATH02.wiff2	2 2 2 2 2 2 2 2 2 2 2 2		2 475.17 2 645.34 1 711.30 6 1123.22 1 1241.92 2 1272.8 5 1347.6	Vz	15.21 24.86 48.33 46.76 30.03 48.32	4.50e4 4.20e4 5.66e4 6.60e4 4.29e4 1.26e5 4.93e4 6.60e4	Ves Ves Ves Ves Ves Ves Ves Ves	

图7. BioPharmaView[™]软件中新峰检测的结果。可轻松显示新峰的数量以及其质谱数据。

报告

批量分析的结果可汇总成简明的报告,其中包括分析信息, 处理参数以及分析中定义的属性汇总表。 报告模板是软件中的标 准模板。在报告中,每个属性都被标记为通过或失败,还展示了检 测到的杂质和新峰的数量。对于每个样本,也提供了整体通过/未 通过的标识以加快审查。

结论

BioPharmaView[™]软件提供了单一软件包,用于实现自动化 的、完整的MAM工作流程,包括:表征,属性定义,自定义计 算,已知杂质检测,未知杂质(新峰)检测和报告。利用此单软 件解决方案完成整个MAM工作流程,很大程度上减少了工作量, 并消除了使用多个软件解决方案时潜在的转换错误。总而言之, BioPharmaView[™]软件为MAM分析的开发和执行提供了卓越的解决 方案。

For Research Use Only. Not for use in Diagnostics Procedures.

AB Sciex is operating as SCIEX. © 2019. AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license. RUO-MKT-02-7507-ZH-A

 SCIEX中国公司
 上海

 北京分公司
 上海

 地址:北京市朝阳区酒仙桥中路24号院
 地址:

 1号楼5层
 电话:

 电话:010-5808 1388
 电话:

 传真:010-5808 1390
 传真:

 全国免费垂询电话:800 820 3488,400 821 3897

上海公司及亚太区应用支持中心
 地址:上海市长宁区福泉北路518号
 1座502室
 电话:021-24197200
 传真:021-24197333
 3897 网址: www.sciex.com.cn

广州分公司 地址: 广州市天河区珠江西路15号 珠江城1907室 电话: 020-85100200 传真: 020-38760835

微博: @SCIEX