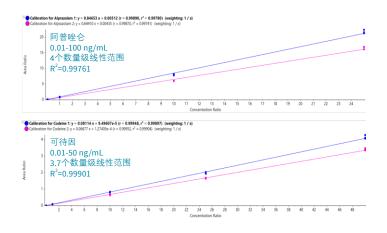


人全血中法医类化合物的高灵敏度检测


使用SCIEX Triple Quad[™] 7500 LC-MS/MS系统 – QTRAP[®] Ready, SCIEX OS软件

Pierre Negri¹ and Ian Moore²

¹ SCIEX, USA;² SCIEX, CA

保持可靠定量的同时,也可实现低水平检测是任何稳定生物 分析工作流程的关键性能指标。在法医实验室,超宽浓度范围 下,对复杂生物基质样本中的大量分析物同时进行精准定量的能 力是非常有挑战性的,通常需要稀释样品,以使其处于仪器的线 性范围内。为了进一步减少样品制备和再分析时间,要求采集到 足够多的化合物色谱峰,并且获得宽线性动态范围,以确保全面 的分析物覆盖率和可靠的定量性能。

本技术报告中,SCIEX Triple Quad 7500系统展现出作为一个 强大的定量平台,在速度、线性动态范围和灵敏度方面都有优异 的表现,可以对49种毒物在人类全血中进行精准定量。被优化的 方法很大程度提高了线性动态范围能力,同时保持所需的准确性 和性能水平。新硬件功能,OptiFlow™ Pro离子源、D Jet™离子导 向技术和E Lens™技术增强了离子化和脱溶剂效果,¹导致本研究 中的一系列待分析物的灵敏度和定量下限大幅地提高。

图1. 不同化合物的线性动态范围(LDR)。阿普唑仑(0.01-100 ng/mL)和 可待因(0.01-50 ng/mL)的校准曲线显示,即使在pg/mL浓度下,也有良 好的线性范围。

SCIEX Triple Quad 7500系统在法医毒物分析中的 关键优势

- SCIEX Triple Quad 7500 系统具有优异的灵敏度和定量性能
- SCIEX OS 软件提供了一个包括数据采集和数据处理的,易于使用的、直观的平台
- SCIEX OS软件中的分窗口多反应监测专业版算法(Scheduled MRM[™] Algorithm Pro)功能和数据采集中的快速极性切换,实现 了快速(6.5min,详见方法中液相条件部分)运行时间
- 稳定、易于使用的OptiFlow Pro离子源提供样品的高效离子化, 同时离子源的智能设计消除了物理优化的需求
- 本研究展示,复杂生物基质中的靶向毒物,在改进的脱溶剂和 样品离子化效率下,提高了灵敏度,最低定量下限(LLOQ)在 ng/mL到pg/mL范围内
- 宽浓度范围,不牺牲任何数据质量,所有毒物进行精准定量
- 系统的整体性能保证了,本研究中优异精度和重现性的获得, 即使在低浓度水平上也是如此

实验细节

靶向分析和方案: 共49种待分析物和18种氘代内标从 Cerilliant公司(Round Rock, TX)购买。甲醇中制备两种溶液:一 种是包含49个目标分析物的标准品混合液,一种是包含18个氘化 内标的内标混合溶液。表1列出了49种目标分析物的名称、标准曲 线范围、线性相关值(R²)和LLOQ,以及在LLOQ浓度下的准确性 和精密度。

工作曲线准备: 使用甲醇配置从10 μg/mL 到 1 pg/mL的 8个 浓度标准溶液。使用MeOH/水(20:80,v/v)配置10 ng/mL内标储 备液,用于样品进样前的复溶溶液。

样品制备:将10 μL的标准溶液混合到90 μL的人全血中。使用 蛋白沉淀法提取每个被添加人全血样本。简而言之,900 μL 的甲 醇/乙腈(50:50, v/v)溶液被加入到人全血样品中,涡流1 min, 超声3 min,然后在涡流1 min混合样本。然后在8000 rpm下离心 样本5 min。上清液被转移到玻璃管中,并且在氮气下完全吹干。 使用500 μL的10 ng/mL甲醇/水(20:80, v/v)内标标准溶液复溶样 本。蛋白质的沉淀过程如图2所示。

液相条件: ExionLC™系统,使用Phenomenex Kinetex Phenyl-Hexyl色谱柱(50×2.1 mm, 2.6 interxm, 00B-4495-E0)。分离条 件与先前技术技术报告中所述的相同²。流动相为甲酸铵水溶液 (MPA)和甲酸甲醇溶液(MPB)。进样量为5 µL,液相运行时间 为6.5 min。

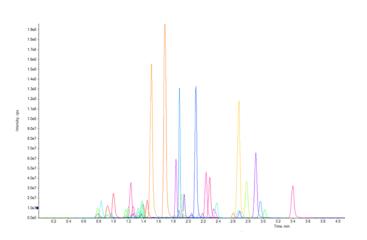


图2. 人全血样品的蛋白沉淀前处理流程。采用9步蛋白质沉淀法从人全血 样本中选择性提取待分析物,并使用SCIEX Triple Quad 7500系统进行分析 **质谱条件:** SCIEX Triple Quad 7500系统,配备OptiFlow分析 探针的OptiFlow Pro离子源和E Lens™技术。电喷雾电离(ESI)离 子源在正负极性下工作。使用SCIEX OS软件2.0版本中的Scheduled MRM Algorithm Pro功能创建包括134个MRM离子对(98个用于毒 物,36个用于内标测定)的简单方法。每个靶向待分析物选择两 个MRM离子对进行监测,并将每个样本进样三次进行数据分析。

数据分析:数据处理使用SCIEX OS软件。使用自动峰 (AutoPeak)算法在查看窗口内可观察到色谱峰,并对区别于 背景的色谱峰进行检测和积分。定量分析在软件的分析模块中进 行,生成校准曲线、计算浓度、测定精密度和准确度。

方法开发和优化

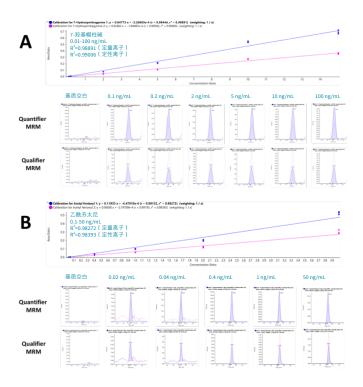
一个被稀释的,包含49个目标分析物的纯标准品混合溶液用 于初始的方法开发。SCIEX OS软件中的Scheduled MRM Algorithm Pro功能用于优化每个色谱峰的采样,同时确保每个MRM离子对的 最佳驻留时间,以确保每个目标分析物色谱峰的可靠积分、定量 和确认。此外,使用快速极性切换确保优异的分析物覆盖。本研 究中的49个目标分析物,大多数MRM离子对在每个色谱峰上都有 15个或更多的扫描点,至少也包括10个扫描点。图3显示了通过已 优化数据采集方法采集到的49种目标分析物的洗脱情况。

图3.49种目标分析物色谱图。标准品混合物,优化采集方法下获得的提取 离子流色谱图(XICs)。使用SCIEX OS软件的 Scheduled MRM[™] Algorithm Pro 功能优化采集方法,即使在MRM离子对共流出非常高的色谱图区域, 也能收集到优异的数据质量。

优化后的检测方法确保毒物定量准确可靠

浓度从1-0.1 pg/mL的49种目标分析物添加空白人全血样本被 前制备。使用SCIEX OS软件分析模块中的AutoPeak算法自动检测 和积分色谱峰,自动计算分析物浓度和子离子比例。

毒理学病例样本中检测到的药物水平可能出现剧烈变化,因此必须使用具有高线性范围的仪器。图1显示了本研究中两种靶向毒物的校准曲线。阿普唑仑和可待因的浓度范围分别为4 (0.01-100 ng/mL)和3.7 (0.01-50 ng/mL)个数量级的线性动态范围。在分析浓度范围内,优异线性被观察到,阿普唑仑和可待因的R²平均值分别为0.99761和0.99901。类似的趋势,在本研究中其他的分析物上,也被观察到。


OptiFlow Pro离子源和E Lens技术提高灵敏度

对于任何需要从生物样本中提取毒物,进行宽浓度范围定量 的毒理实验室来说,开发能够产生高灵敏度的可靠工作流程是 至关重要的。为此,我们通过确认49种目标毒物的LLOQ来评估 SCIEX Triple Quad 7500系统的灵敏度。被测定的LLOQ值作为最低 定量浓度,需要满足以下性能要求:信噪比(S/N)至少为10,实 测浓度对照真实浓度的准确度小于20%,精度(%偏差)低于25%, 用于线性校准曲线的计算的R²值至少为0.98。

图4显示了7-羟基帽柱碱(图4A)和乙酰芬太尼(图4B)两种 MRM离子对的提取离子流图(XIC)和校准曲线。这两个化合物的 定量和定性离子的提取离子流图显示出高水平的灵敏度,并展示 了0.1-100 ng / mL 7-羟基帽柱碱和0.02 -50 ng / mL乙酰芬太尼标准 曲线内的各浓度点优异的准确度。用标准曲线上的6个浓度点来确 定这两种目标化合物的定量离子和定性离子的离子比率标准。结 果表明,即使在标准曲线涵盖的浓度范围远远超过常规生物分析 要求的情况下,标准曲线也具有良好的相关性。

表1总结了在人全血中添加的49种目标分析物的统计结果。该 表包括标准曲线范围、线性相关系数(R²值)和LLOQ,以及每种 药物监测两个的MRM离子对的准确性和精密度。总体而言,该方 法具有良好的重现性、精密度、准确度和线性,证明了所建立方 法的可靠性和性能。

图5展示了二氢可待因(图5A)和去氧可酮(图5B)在0.5 ~ 100ng /mL浓度范围内,峰面积积分的统计结果和标准曲线结 果。在标准曲线上六个浓度点覆盖的浓度范围内,展示优异的重 现性,准确性和精密度。二氢可待因的分析结果展示良好的精密 度和准确度,其定量离子和定性离子的平均R²分别为0.99571和 0.99323。SCIEX OS软件实现了全流程定量,为快速、直观、精简 的数据处理而设计,结果准确可靠。

图4. 部分毒物的高选择性和灵敏度。A) 7-羟基帽柱碱, 0.1-100 ng /mL, 两 个离子对校准曲线和提取离子流图。B)乙酰芬太尼, 0.02-50 ng /mL, 两个 离子对校准曲线和提取离子流图。校准曲线和提取离子流图显示了良好的 线性和灵敏度。

图5. 部分化合物的统计结果和标准曲线。二氢可待因(A)和去氧可酮(B) 0.5-100 ng/mL的统计窗口和校准曲线。这两种分析物在校准曲线的6各浓度点上都显示了良好的线性、重现性、准确性和精密度,证明了该方法的整体稳健性。

结论

本文描述了使用SCIEX Triple Quad 7500系统检测人全血中49 种毒物的优化且灵敏的方法。SCIEX OS软件中的Scheduled MRM Algorithm Pro功能实现了数据采样方法的优化。新硬件OptiFlow Pro离子源、D Jet离子导向技术和E Lens技术提供了对所有目标 毒物亚-ng/mL级别灵敏度,有些甚至可以降至pg/mL级别,同时 保持测量的线性、精确度和准确性。这种超乎寻常的灵敏度的获 得,是在没有任何数据质量的牺牲或妥协的情况下实现的,正如 在LLOQ下,观察到的极佳的精确度和准确性所证明的那样。总体 而言,SCIEX Triple Quad 7500系统的所有功能结合在一起,使得 本研究中所检测的一系列毒物的灵敏度得到了大幅提高。

引用文献

- Enabling new levels of quantification using the SCIEX Triple Quad[™] 7500 LC-MS/MS System - QTRAP[®] Ready, powered by SCIEX OS Software. SCIEX Technical Note RUO-MKT-02-11886-A.
- 2. High Sensitivity and Dynamic Range for 93-Compound Forensic Panel Analysis in Urine. SCIEX Technical Note RUO-MKT-02-9914-A.

表1. 本工作流程中检测的49种毒物的统计结果。该表包括标准曲线范围、线性相关系数(R²值)和LLOQ,以及每种药物监测的两个MRM离子对在LLOQ浓 度下的准确性精密度

化合物	标准曲线 (ng/mL)	线性相关 系数(R²)	最低定量 下限 (ng/mL)	最低定量 下限准确性 (%)	最低定量下限 精密度 (%)
6-单乙酰吗啡 1, (6-MAM 1)	0.2-200	0.99191	0.2	82.62	2.74
6-单乙酰吗啡 2, (6-MAM 2)	0.2-200	0.9902	0.2	83.02	4.91
7-氨基氯硝西泮 1, (7-Aminoclonazepam 1)	0.5-100	0.9991	0.5	117.72	2.66
:7-氨基氯硝西泮 2,(7-Aminoclonazepam 2)	0.5-100	0.99936	0.5	112.71	7.54
7-羟基帽柱碱 1, (7-Hydroxymitragynine 1)	0.1-100	0.98891	0.1	84.76	1.72
7-羟基帽柱碱 2, (7-Hydroxymitragynine 2)	0.1-100	0.99006	0.1	90.58	4.33
乙酰基芬太尼 1, (Acetyl fentanyl 1)	0.02-50	0.98272	0.02	113.43	6.33
乙酰基芬太尼 2, (Acetyl fentanyl 2)	0.02-50	0.98393	0.02	112.01	9.49
A-羟基阿普唑仑 1, (Alpha-Hydroxyalprazolam 1)	1-100	0.99918	1	93.38	2.57
A-羟基阿普唑仑 2, (Alpha-Hydroxyalprazolam 2)	1-100	0.99817	1	93.67	7.67
阿普唑仑1, (Alprazolam 1)	0.01-100	0.9978	0.01	84.15	5.96
阿普唑仑2, (Alprazolam 2)	0.01-100	0.99741	0.01	80.98	1.33
安非他命1, (Amphetamine 1)	0.2-200	0.98925	0.2	117.13	22.79
安非他命2, (Amphetamine 2)	0.2-200	0.98784	0.2	86.02	8.95
苯甲酰爱康宁 1, (Benzoylecgonine 1)	0.5-100	0.9777	0.5	100	5.82
苯甲酰爱康宁 2, (Benzoylecgonine 2)	0.5-100	0.99776	0.5	103.7	3.07
丁丙诺啡1, (Buprenorphine 1)	0.4-400	0.99018	0.4	98.61	24.21
丁丙诺啡2, (Buprenorphine 2)	0.4-400	0.98312	0.4	96.09	5.49
肌安宁1, (Carisoprodol 1)	2-200	0.95267	2	95.22	13.59
肌安宁2, (Carisoprodol 2)	2-200	0.98049	2	117.4	12.85
可待因1, (Codeine 1)	0.01-50	0.99897	0.01	80.29	13.48

表1. 本工作流程中检测的49种毒物的统计结果。该表包括标准曲线范围、线性相关系数(R²值)和LLOQ,以及每种药物监测的两个MRM离子对在LLOQ浓 度下的准确性精密度(续)

化合物	标准曲线 (ng/mL)	线性相关 系数(R²)	最低定量 下限 (ng/mL)	最低定量 下限准确性 (%)	最低定量下限 精密度 (%)
可待因2, (Codeine 2)	0.01-50	0.99904	0.01	93.47	17.8
右美沙芬1, (Dextromethorphan 1)	0.5-100	0.99598	0.5	119.17	10.95
右美沙芬2, (Dextromethorphan 2)	0.5-100	0.99772	0.5	101.42	5.86
安定1, (Diazepam 1)	0.5-100	0.99916	0.5	118.51	1.07
安定2, (Diazepam 2)	0.5-100	0.99522	0.5	118.3	0.96
双氢可待因的1, (Dihydrocodeine 1)	0.5-100	0.98889	0.5	98.4	5.04
双氢可待因的2, (Dihydrocodeine 2)	0.5-100	0.98006	0.5	117.31	4.45
EDDP1(美沙酮代谢物),(EDDP1)	0.1-200	0.98973	0.1	90.93	8.74
EDDP 2 (美沙酮代谢物), (EDDP 2)	0.1-200	0.99128	0.1	109.63	13.35
芬太尼 1, (Fentanyl 1)	0.4-400	0.9821	0.4	112.74	3.66
芬太尼 2, (Fentanyl 2)	0.4-400	0.98615	0.4	110.68	2.3
加巴喷丁 1, (Gabapentin 1)	2-200	0.98159	2	115.14	5.53
加巴喷丁 2, (Gabapentin 2)	2-200	0.98326	2	113.6	3.94
氢可酮 1, (Hydrocodone 1)	1-100	0.97652	1	99.3	5.59
氢可酮 2, (Hydrocodone 2)	1-100	0.9907	1	103.96	7.82
氢吗啡酮 1, (Hydromorphone 1)	1-100	0.98541	1	110.69	0.35
氢吗啡酮 2, (Hydromorphone 2)	1-100	0.98618	1	97.29	1.25
氯羟去甲安定 1, (Lorazepam 1)	0.5-100	0.99699	0.5	0.6.76	2.89
氯羟去甲安定 2, (Lorazepam 2)	0.5-100	0.9968	0.5	119.49	5.71
3,4-亚甲二氧基苯丙胺 1,(MDA1)	10-100	0.92279	10	109.46	19.09
3,4-亚甲二氧基苯丙胺 2,(MDA 2)	10-100	0.99617	10	108.54	10.94
甲基二乙醇胺 1,(MDEA1)	2-200	0.99567	2	100	7.62
甲基二乙醇胺 2,(MDEA 2)	2-200	0.99682	2	100	5.95
3,4-亚甲基二氧甲基苯丙胺 1,(MDMA1)	5-200	0.9855	5	108.39	1.94
3,4 - 亚甲基二氧甲基苯丙胺 2, (MDMA 2)	5-200	0.99562	5	102.96	5.53
美沙酮 1, (Methadone 1)	1-100	0.9904	1	97.53	4.64
美沙酮 2, (Methadone 2)	1-100	0.9933	1	115.54	5.37
甲基苯丙胺 1, (Methamphetamine 1)	2-200	0.99361	2	112.1	324
甲基苯丙胺 2, (Methamphetamine 2)	2-200	0.9955	2	105.7	1.71
哌醋甲酯 1, (Methylphenidate 1)	1-100	0.99276	1	96.82	0.65
哌醋甲酯 2, (Methylphenidate 2)	1-100	0.98423	1	87.52	4.34
咪达唑仑 1, (Midazolam 1)	1-100	0.99861	1	92.81	3.91

表1. 本工作流程中检测的49种毒物的统计结果。该表包括标准曲线范围、线性相关系数(R²值)和LLOQ,以及每种药物监测的两个MRM离子对在LLOQ浓 度下的准确性精密度(续)

化合物	标准曲线 (ng/mL)	线性相关 系数(R²)	最低定量 下限 (ng/mL)	最低定量 下限准确性 (%)	最低定量下限 精密度 (%)
咪达唑仑 2, (Midazolam 2)	1-100	0.99484	1	114.07	3.21
帽柱木碱 1, (Mitragynine 1)	0.2-200	0.99572	0.2	97.85	16.06
帽柱木碱 2, (Mitragynine 2)	0.2-200	0.99422	0.2	96.69	6.71
吗啡 1, (Morphine 1)	1-100	0.98897	0.2	116.82	0.73
吗啡 2, (Morphine 2)	1-100	0.9883	0.2	116.5	1.46
纳洛酮 1, (Naloxone 1)	1-100	0.98323	1	100.71	0.9
纳洛酮 2, (Naloxone 2)	1-100	0.98563	1	97.88	4.11
环丙甲羟二羟吗啡酮 1, (Naltrexone 1)	0.5-100	0.99273	0.5	119.45	4.17
环丙甲羟二羟吗啡酮 2, (Naltrexone 2)	0.5-100	0.98868	0.5	119.72	18.77
去丁丙诺啡 1, (Norbuprenorphine 1)	0.4-200	0.97745	0.4	98.35	4.73
去丁丙诺啡 2, (Norbuprenorphine 2)	0.4-200	0.9792	0.4	98.05	0.5
去甲可待因 1, (Norcodeine 1)	0.5-100	0.98892	0.5	119.46	2.73
去甲可待因 2, (Norcodeine 2)	0.5-100	0.9903	0.5	117.3	1.03
去甲西泮 1, (Nordiazepam 1)	1-100	0.99073	1	107.85	0.48
去甲西泮 2, (Nordiazepam 2)	1-100	0.99087	1	107.46	1.11
诺芬太尼 1, (Norfentanyl 1)	0.4-100	0.99366	0.4	100.28	4.03
诺芬太尼 2, (Norfentanyl 2)	0.4-100	0.99601	0.4	99.91	4.13
去氢可待因 1,(Norhydrocodone 1)	1-100	0.98777	1	93.83	6.16
去氢可待因 2, (Norhydrocodone 2)	1-100	0.99486	1	94.06	7.91
诺罗西酮 1,(Noroxycodone 1)	0.5-100	0.99411	0.5	110.52	5.61
诺罗西酮 2, (Noroxycodone 2)	0.5-100	0.99235	0.5	112.35	5.62
去甲丙氧吩 1, (Norpropoxyphene 1)	1-200	0.97989	1	105.35	9.6
去甲丙氧吩 2, (Norpropoxyphene 2)	1-200	0.98323	1	104.65	10.7
O-去甲基曲马多 1, (O-Desmethyltramadol 1)	1-100	0.9631	1	93.34	13.91
O-去甲基曲马多 2, (O-Desmethyltramadol 2)	1-100	0.96164	1	90.77	4.82
去甲羟基安定 1, (Oxazepam 1)	0.5-100	0.99704	0.5	85.31	7.74
去甲羟基安定 2, (Oxazepam 2)	0.5-100	0.99195	0.5	86.37	14.15
羟考酮 1, (Oxycodone 1)	0.5-100	0.98486	0.5	113.73	11.84
羟考酮 2, (Oxycodone 2)	0.5-100	0.98492	0.5	115.65	10.38
羟吗啡酮 1, (Oxymorphone 1)	1-100	0.98986	0.5	114.44	2.78
羟吗啡酮 2, (Oxymorphone 2)	1-100	0.99246	0.5	116.2	1.98
苯环己哌啶 1, (PCP 1)	0.5-100	0.99167	0.5	103.36	10.99

表1. 本工作流程中检测的49种毒物的统计结果。该表包括标准曲线范围、线性相关系数(R²值)和LLOQ,以及每种药物监测的两个MRM离子对在LLOQ浓 度下的准确性精密度(续)

化合物	标准曲线 (ng/mL)	线性相关 系数(R ²)	最低定量 下限 (ng/mL)	最低定量 下限准确性 (%)	最低定量下限 精密度 (%)
苯环己哌啶 2, (PCP 2)	0100	0.98672	0.5	92.84	14.21
普瑞巴林 1, (Pregabalin 1)	1-200	0.9838	1	94.53	16.48
普瑞巴林 2, (Pregabalin 2)	1-200	0.98277	1	94.79	16.12
他喷他多 1, (Tapentadol 1)	0.5-100	0.98018	0.5	94.01	13.36
他喷他多 2,(Tapentadol 2)	0.5-100	0.9981	0.5	103.41	7.72
羟基安定 1, (Temazepam 1)	0.05-100	0.99217	0.05	113.97	4.89
羟基安定 2, (Temazepam 2)	0.05-100	0.99249	0.05	119.15	4.38
曲马多 1, (Tramadol 1)	0.5-100	0.99674	0.5	102.19	10.33
曲马多 2, (Tramadol 2)	0.5-100	0.99779	0.5	110.82	3.63
唑吡坦 1, (Zolpidem 1)	1-100	0.98577	1	93.87	4.83
唑吡坦 2, (Zolpidem 2)	1-100	0.9981	1	103.41	7.81
9-羧基-四氢大麻酚 1,(THC-COOH 1)	1-100	0.9537	1	116.92	5.86
9-羧基-四氢大麻酚 2,(THC-COOH 2)	1-100	0.9846	1	118.37	7.68

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。 所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有 人。© 2020 DH Tech. Dev. Pte. Ltd.

RUO-MKT-02-11427-ZH-A

 SCIEX中国

 北京分公司

 北京市朝阳区酒仙桥中路24号院

 1号楼5层

 电话:010-5808-1388

 传真:010-5808-1390

 全国咨询电话:800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室 电话: 021-2419-7200 传真: 021-2419-7333 官网: sciex.com.cn 广州分公司 广州市天河区珠江西路15号 珠江城1907室 电话:020-8510-0200 传真:020-3876-0835 官方微信:ABSciex-China