TripleQuad[™] /QTRAP[®]

LC/MS/MS System

シリーズ

初級定量トレーニングテキスト

Analyst[®]ソフトウェア SCIEX OS ソフトウェア説明用資料

メソッド開発

ソフトウェアのバージョンにより、画面や操作方法が若干異なる場合があります。 予めご了承ください。

株式会社 エービー・サイエックス アプリケーションサポート *2019 年3月版*

目次

1	講新	長資料	1-1
2	ソラ	1トウェアの概要	2-1
3	測定	<u> </u>	3-1
	3.1	測定の流れ	3-1
	3.2	ソフトウェアの起動と機器の設定	3-2
	機	器を Ready 状態(右下のアイコンが緑色の状態)にする	3-4
	3.3	最適化	3-5
	Ca	alculator を用いたモノアイソトピック質量(精密質量)と平均分子量の計算方法	3-6
	Μ	S 内部のパラメータの最適化(インフュージョンの最適化)	3-6
	In	fusioin を用いた MS 内部パラメータの最適化3	8-13
	イ	オンソースの最適化を行う(FIA の最適化)	8-16
	FI	A用に作成したメソッドで機器を平衡化する	8-27
	Fl	Aによるイオンソースの自動最適化を始める	8-28
	3.4	測定メソッド(Acquisition Method)の完成3	8-31
	3.5	測定	8-36
	力	ラムの接続	8-36
	Sy	vstem の平衡化	8-36
	Ba	atch の作成3	8-36
	測	定の開始3	8-40
4	停止	_操作	4-1
5	デー	-タの確認	5-1
	デ	ータを開く	5-1
	前	後のクロマトグラムを表示する	5-1
	ク	ロマトグラムの抽出	5-2
	ク	ロマトグラムを拡大する	5-4
	分	析時の測定条件を確認する	5-4
	画	面を印刷する	5-5
	表	示したクロマトグラムを閉じる	5-5
6	SCI	[EX OS Software を用いた定量解析	6-1
	6.1	SCIEX OS Software の Analytics の起動	6-3
	6.2	Project の作成	6-3
	6.3	Project の選択	6-3
	6.4	- 初期設定の変更	6-3
	6.5	Result Table の作成	6-4
	新	規に定量解析用メソッドを作成し、Results Table を作成する	6-5

6.6	Results Table の確認、編集	6-9
6.7	クロマトグラムの表示	6-10
6.8	パラメータの変更	6-10
全	サンプルピークに変更したパラメータを反映させる	6-11
6.9	手動積分	6-11
F	ークとしての認識を外す	6-11
6.10	検量線の表示、重みづけ、検量線の種類を変更	6-12
6.11	データの追加と削除	6 - 13
デ	ータの追加	6-13
デ	ータの削除	6-13
6.12	Report の作成	6-14

本、ニュノルキモの表直の衣木について、「即下記のように衣木しておりよう。							
榜	<u> 後種</u>	略称					
API 2000 [™] LC/MS/MS System	-	API 2000™					
-	QTRAP [®] LC/MS/MS System	QTRAP®					
API 3000 [™] LC/MS/MS System	-	API 3000™					
API 3200 [™] LC/MS/MS System	3200 QTRAP [®] LC/MS/MS System	API 3200 [™] 3200 QTRAP [®]					
API 4000 [™] LC/MS/MS System	4000 QTRAP [®] LC/MS/MS System	API 4000™ 4000 QTRAP [®]					
AB SCIEX Triple Quad™ 4500 LC/MS/MS System	AB SCIEX QTRAP [®] 4500 LC/MS/MS System	Triple Quad [™] 4500 QTRAP [®] 4500					
API 5000 [™] LC/MS/MS System	-	API 5000™					
AB SCIEX Triple Quad™ 5500 LC/MS/MS System	AB SCIEX QTRAP [®] 5500 LC/MS/MS System	Triple Quad [™] 5500 QTRAP [®] 5500					
AB SCIEX Triple Quad™ 6500 LC/MS/MS System	AB SCIEX QTRAP [®] 6500 LC/MS/MS System	Triple Quad [™] 6500 QTRAP [®] 6500					

本マニュアル中での装置の表示について、一部下記のように表示しております。

1 講義資料

40

30 20

10

Ó

SCIEX

610 611 612 613 614 615 Mass/Charge, Da

Answers for Science. Knowledge for Life.

イオン化法の特徴									
		ESI	APCI						
	最大分子重	数10万 Da	約1300Da						
対象	極性	中極性~高極性	低極性~高極性						
サンブル	熱に不安定な サンプル	可能	通さない						
	揮発性	影響なし	揮発性成分に対して有効						
対応流済	ġ.	赘nL~ 3mL/min	0.2~ 2.0 mL/min						
イオンサ イオンエ	プレッション こンハンスメント	起こる	少ない						
LC溶媒	の影響	影響されやすい	影響されにくい						
その他		 広範囲の化合物測定に有効 今価イオンが生じるので高分子化合物 の分析にも有利 クラスター(多量体)が生成するため、 高濃度側での検量線の直線性が 低下する場合がある。 	・気化を促進するためブローブを熱している ・生体サンブルなど不揮発性の物質を 多く含む場合、長時間の測定により コロナニードルが汚れるため感度が 低下する。(コロナニードルのクリー ニングを行えば感度は復帰する。)						
14 ⁄S	CIEX	Answers for Science. Knowledge for Life."	© 2017 A& Scierc						

イオ:	イオン化法とイオン化されやすい部分構造									
最大 質量 Positive Mode Negative Mode										
ESI	10000 以上	R-NH ₂	R-50,H R-50,X R-0-50,H R-0-50,X () R-00H R-000X							
APCI	1000 程度	R-NH ₂ R-000R' R-00NH ₂ 0 R-1-R' R-0H0	R-S0,H R-S0,X R-0-S0,H R-0-S0,X R-000H R-000X							
		R1 R3 R1 R								
17 SCIEX Answers for Science. D 2017 AS Science										

1-13

対応策①:マトリックスの量を減らす (1)注入量の削減 (2)サンプルの希釈

対応策②:内部標準物質(IS)を使用する 重水素体や13C

対応策③:分離を変える

(1)分離カラムの変更

(2)移動相、グラジエント条件の変更

C 2017 AS Scie

対応策④:前処理の変更

40 SCIEX Answers for Science.

1-20

9. 略語一覧

ESI: Electrospray Ionization

(大気圧下で行われるイオン化の一つで、エレクトロスプレー技術を使った イオン化法)

APCI: Atmospheric Pressure Chemical Ionization

(大気圧下で行われるイオン化の一つで、通常は大気圧スプレーによって生成 した気体試料を、コロナ放電で生成させたイオン種(反応イオン)と反応させて イオン化すること)

- LC: Liquid Chromatography (液体クロマトグラフィ)
- IC: Ion Chromatography (イオンクロマトグラフィ)

FIA: Flow Injection Analysis

(注入したサンプルをLCカラムを使わずに分析する方法)

m/z: Mass-to-charge ratio

(質量電荷比。 イオンの質量(m)を電荷数(z)で割った値)

MRM: Multiple Reaction Monitoring

(Q1で選択された特定の前駆イオン (Precursor ion) から生じる特定の イオン の質量を連続的に検出する方法)

Q1MS: Q1 MS Scan

(マススペクトルを測定するために、Q1 で走査したイオンを検出する方法)

Q3MS : Q3 MS Scan

(マススペクトルを測定するために、Q3 で走査したイオンを検出する方法)

EMS: Enhanced MS Scan

(Liner Ion Trap を利用して、走査したイオンを検出する方法)

MS2: Product Ion Scan

(特定の前駆イオン (Precursor ion) から生じるイオン (Product ion) を 検出する方法)

EPI: Enhanced Product Ion Scan

(Liner Ion Trap を利用して Product Ion を検出する方法)

Prec: Precursor Ion Scan

(特定のプロダクトイオンを生じる総ての前駆イオンを検出する方法)

NL: Neutral Loss Scan

(特定の中性化学種を脱離する総ての前駆イオンを検出する方法)

IDA: Information Dependent Acquisition

(サーベイスキャンで取得した MS スペクトルから強度の強いイオンを選択し、 リアルタイムで MS2 あるいは EPI のデータを取得する方法)

DP: Declustering Potential

(イオンを MS 内部へ引き込むための電圧であり、オリフィスプレートに電圧が かかる) CE: Collision Energy

(MS/MS などの CAD 実験において、Q2 でイオンを加速させるための電圧で あり、Q0 と Q2 の電位差で表示される)

LLOQ: Low Limited of Quantification (定量下限值)

- LOD: Low Limited of Detection (検出下限値)
- %CV: Coefficient of Variance (in percent)
- RT: Retention Time (保持時間)
- S/N: Signal to Noise
- IS: Internal Standard (内部標準物質)

2 ソフトウェアの概要

Analyst®ソフトウェアのファイル構造

- ワークステーションのCドライブにOS、xドライブ(x: 納入先仕様によりD、E、F等異なります)に Analyst[®] ソフトウェアにて取得したデータ等が保存されていま す。
- また全てのデータ、分析メソッド等は項目(日付、分析 ■ ■ 番、成分名等)ごとに分類することができ、これを Project と呼びます。
- データ等は該当 Project 内の Data フォルダ内に保存されます。 (x://Analyst Data/Project/Data)
- Analyst[®]ソフトウェアによって作成されるファイルの種類は様々ありますが、ファイルの種類により特定の拡張子が自動的に付けられます。高い頻度で用いられるのは、.dam(分析メソッド)、.dab(バッチ)、.wiff(データ)、.qmf(解析メソッド)及び.rdb(定量結果)です。

Acquisition Batch Files (*.dab) Acquisition Batch Template Files (*.dat) Acquisition Method (*.dam) Explore History Files (*.eph) Log Files (*.log) Quantitation Method (*.qmf) Quantitation Result Files (*.rdb) Report Files (*.rtf) Report Files (*.rtf) Text Data Files (*.txt) Wiff Files (*.wiff)

<u>Project</u>

Analyst[®]ソフトウェアでは、データや測定法、定量結果などを、Project ごとに管理しています。Project は、Analyst[®]ソフトウェア上部中央に表示され、プルダウンメニューにより選択できます。

<u> </u>	<u>E</u> dit	⊻iew	Tools	Window	Script	<u>H</u> elp				
1	2	- 6	à	X 🗅 I	2 🗅	$\underline{C^{n}} \ {}^{\pm}$	Configure Mode	~	Test	~
· 8	Z 🕸	هر ک	品							

- データや測定法、定量結果などは、そのファイルが保存されている Project を選択している時にのみ開くことができます。ただし、すでに開いているデータなどは、Projectを変更しても表示されたままです。
- 新たに測定を開始する時や、測定者が変わる時などは違う Project を作成し、使用します。
- 例えば、ある測定者が Project を作成し、その Project の中に自分のファイルを保存していると、該当する Project を選択するだけで自分のファイルだけを見ることができるようになります。(x://Analyst Data/project)

API Instrument という Project

 API Instrument という Project は特別な Project です。この Project の中にはキャリブ レーションデータ(質量分析器のマスナンバーを決めている表)やパラメータの初期値な ど非常に重要なファイルが入っています。この Project に保存されているファイルやメ ソッド等を変更もしくは削除した場合、機器が正常に動作しなくなる恐れがあります。

<u>API Instrument (Project) は、キャリブレーションを行う時にのみ使用してください。</u>

Project は、ドライブ **x**://Analyst Data/Projects の中に入っ ています。それぞれの Project のフォルダには、測定法や測 定データ、定量結果などが格納されます。

• Acquisition Method :

PPG での Calibration を行う際に使用するメソッドが格納 されています。

• Configuration :

Analyst[®]ソフトウェアの Configuration モードで設定した、 制御する装置の組み合わせ(MS 単体 or LC+MS で使用す るか)のファイルが格納されています。

• Instrument Data :

キャリブレーションファイルが格納されています。

• Parameter Settings :

MS 内部の電圧、およびイオンソースのデフォルトの設定値 のファイルが格納されています。

• Preferences :

Tuning に用いる PPG のマスナンバーのリスト等を含む ファイルが格納されています。

• Templates :

印刷時のヘッダ、フッターなどを設定する Report Template 等のファイルが格納されています。

• Tuning Cache :

Manual Tuning で測定したデータが一時的に保存されるフォルダです。フォルダ内にデー タが増えてきた場合、削除します。

バックアップについて

- バックアップを取る際は、Analyst[®]ソフトウェアがインストールされているドライブ x://Analyst Dataのフォルダごとバックアップすることをお勧め致します。
- Analyst Dataのフォルダには、Projectsのフォルダだけでなく、ライブラリーや化合物データベースのファイルが入っています。
 - Projects のフォルダ [□]Projects
 - 化合物データベースのファイル ❷ Compound DB.mdb
 - ライブラリーのファイル ☑ CompoundLib.mdb
- 最低限 API Instrument の Project は、別のドライブあるいは CD-R などのメディアに バックアップすることをお願い致します。
- API Instrumentのフォルダには、下記の3つの重要なファイル等が保存されています。
 - Instrument Data
 - Parameter Setting
 - o Preference

Analyst[®]ソフトウェアの5種類のモード

Analyst[®]ソフトウェアは、機器の設定、最適化、測定、解析およ び定量の機能を持っています。それぞれの機能は、以下の5種類 のモードに対応しています。画面の左が Navigation Bar です。

• Configure $\neq - \models$:

制御する装置の選択(MS単体で使用するか、LC/MSとして使用 するか)などを決定します。

• Tune and Calibrate $\mathcal{F} - \mathcal{F}$:

測定条件の最適化や質量分析器の質量補正などを行います。

Acquire モード:

測定用のメソッドを作成し、データを取り込みます。

• Explore モード :

データの閲覧や、解析に使用します。スペクトルの差し引きなど も行うことがます。

• Quantitate $\mathcal{F} - \mathcal{F}$:

定量を行います。検量線の作成、平均値や標準偏差などを求める ことができます。

- 上記フローチャートは、測定成分に対する自動最適化を行い、そこで得られた分析メ ソッドを用いてクロマト測定を行い、最終的に定量計算を行うまでの手順を示していま す。
- これらのモードは、ほぼ独立して機能し、異なるソフトウエアのように機能します。
- 実際、モードを切り替えると上部ツールバーの表示内容が変わり、違う機能を持っていることがわかります。この機能により、データを取り込みながら他のデータを解析したり、定量したりすることができます。
- この時、それぞれの選択したモードで表示されているデータは、そのモードが選択されている時のみ表示され、他のモードを選択すると画面上からは消えます。この場合でも、裏の画面で表示されているような状態になっており、もとのモードに戻すと現れます。
- そのモードで表示されているファイルの数は、たとえば Acquire(3)というようにカッコの中の数字として表示されます。

3 測定

3.1 測定の流れ

3.2 ソフトウェアの起動と機器の設定

<u>Analyst t[®]ソフトウェアの起動</u>

デスクトップ上の Analyst[®]ソフトウェアのアイコン Mをダブルクリックします。 または、Start メニュー>Program>AB SCIEX>Analyst>Analyst1.x.x から、 Analyst[®]ソフトウェアを起動します。

<u>Project の変更、作成</u>

以降の方法で該当する Project を選択、または新規 Project を作成します。

<u>Project</u>の選択

 以前使用した Project を使用する場合は、プルダウンから目的の Project を選択して ください。

Log Processing Methods

Add All

Set configuration as default for new projects

Processing Scripts

<=

ОК

Remove All

Help

Cancel

制御する機器を設定する

Analyst[®]ソフトウェアで制御する機器を設定します。

- ① Hardware Configuration をダブルクリックします。
- ② 使用する機器が組み込まれている Profile (Analyst[®]ソフトウェアでは、制御する 機器の設定ファイルを Profile と言います)を選択し、Activate Profile をクリック します。
 - ※ Training では、MassSpecOnly を Activate してください。
 - ※ 選択されている Profile に緑色のチェックマークが点灯し、Analyst[®] ソフトウェアが機器を認識している状態になります。
 - ※ LC を接続して測定をする場合は Mass+LC のように、Mass と LC を組み合 わせてある Profile を Activate します。
 - ※ Activate 時に点灯するマークで機器を認識している状態がわかります。
 - ✓ : Profile が正常に認識されています。
 - 😣 : Profile に制御エラーが発生しています。
- ③ Hardware Configuration の Close をクリックし、ウィンドウを閉じます。
 - ※ Analyst[®]ソフトウェアで制御している機器が画面右下の Status bar にアイコ ンとして表示されます。
 - ※ アイコンの色で装置の状態が確認できます。
 - 黄色:Standby
 - 禄:Ready
 - 赤:Error
 - ※ 各アイコンをダブルクリックする ことで該当モジュール名の確認及 び、現在の状態を確認することが出 来ます。
 - ※ 右図は MS の状態を表示させたもので、MSの真空度や現在使用しているイオンソースの種類を確認することが出来ます

MassSpec Triple Quad 5500 Detailed Status	. 2
Model: Triple Quad 5500 Method :	Idle
Vacuum System Status	
Operating Pressure Reached	
Vacuum Gauge(10e-5torr) :	0.7
Backing Pump Status :	Enabled
Turbo Pump :	Normal
真空度	
Sample Introduction Status	
Not Ready	
Ion Path Electronics :	On
Source Temperature (deg. C) :	34.0
Source Housing Installed	Turbo Spray
Source Exhaust Pump :	DH
Interface Heater:	Ready
「オオンシースの種類	
Josstrau Voltage M	17.58400
Nebulizer Current (microA)	0.00000
Detector Status	
	EE007

🛷 Idle 👫 Ready

機器を Ready 状態(右下のアイコンが緑色の状態)にする

- ① Navigation Bar の Acquire を選択し、Acquire モードにします。
- ② メニューの View>Sample Queue を選択し、Queue Manager を開きます。
 ※ ツールバーの ¹(View Queue アイコン)をクリックしても開きます。
- ③ Queue Manager が開いている状態で、メニューの Acquire>Ready を選択します。
 - ※ ツールバーの 🌾 (Ready アイコン)をクリックしても開きます。
 - ※ Analyst[®]ソフトウェア画面右下の機器アイコンが緑 色となり、Ready(制御可能状態)になります。

View	View Queue I Equilibrate Standby Ready Queue Manage									r	
	🗄 Configure	A	cquir	ing Sample 0 of 0	Period 1	of 1		Durations Expected	00:00:00	, Queue Server	
	🖉 🖉 Security Configuration	0% 🚺	П				100%	Elapsed	Read	y Tune	
	Hardware Configuration		Γ	Start Time	Sample Name	Plate Po	Vial Posit	Status	Method	Batch	<u> </u>
	🐨 🕼 Report Template Editor	1	•	5/27/2013 4:48:32 P	TuneSampleID	0		Terminated	testTune	ManualTune	
	《仰》 Tune and Calibrate	2	•	5/27/2013 4:49:41 P	TuneSampleID	0		Terminated	testTune	ManualTune	
		3	\checkmark	5/27/2013 4:51:03 P	Q1_200_(EQ)	1	0	Acquired	01_Q1_200_Da	20120326 Batch	
Acquire		4		5/27/2013 4:52:36 P	Q1_200_Da	1	0	Acquired	01_Q1_200_Da	20120326 Batch	
,	Ar Instrument Uptimization	5	I ₹	5/27/2013 4:54:09 P	Q1_1000_Da	1	0	Acquired	02_Q1_1000_Da	20120326 Batch	
	Manual Tuning	6	I ₹	5/27/2013 4:54:29 P	Q1_2000_Da	1	0	Acquired	03_Q1_2000_Da	20120326 Batch	
	🖛 Acquire	7	I √	5/27/2013 4:54:41 P	PI_200_Da	1	0	Acquired	04_PI_200_Da	20120326 Batch	
	Statistical and a statistical statisticae statisticae statisticae statisticae statisticae statisticae	8	. ₹	5/27/2013 4:55:50 P	PI_1000_Da	1	0	Acquired	05_PI_1000_Da	20120326 Batch	
	IDA Method Wizard	9	I√.	5/27/2013 4:56:06 P	PI_2000_Da	1	0	Acquired	06_PI_2000_Da	20120326 Batch	
	🖃 🔎 🗡 Build Acquisition Met	10	Į√,	5/27/2013 4:56:15 P	PI_12000_Da	1	U	Acquired	U7_PI_12000_Da	20120326 Batch	
	- 📅 Build Acquisition Batch	11	Į√,	5/2//2013 4:56:18 P	EMS_1000_Da	1	U	Acquired	U8_EMS_1000_D	20120326 Batch	
		12	I √	5/2//2013 4:56:44 P	EMS_10000_Da	1	U	Acquired	U9_EMS_10000_	20120326 Batch	
	ZY Express view	13	I √	5/27/2013 4:56:54 P	EMS_20000_Da	1	0	Acquired	10_EMS_20000_	20120326 Batch	- E
	✓ Explore	14	I √	5/27/2013 4:57:02 P	ER_50_Da	1	0	Acquired	11_2_ER_50_Da	20120326 Batch	~ E
	🖙 🗘 Onen Data File 🛛 👻	15		16/77/2013 A-67-47 P	IE₩ 250 Ds	- 1		acquired	11 ER 250 Da	701120326 Batch	
1	For Help, press F1 User Name: QTRAP4500_SM2\administrator D:\Analyst Data 🐲 Idle 📘 Read										

④ 測定を終えた場合、同じく Queue Manager 画面が開いている状態で、メニューの Standby を選択します。

※ Queue Manager 画面が開いていないと、機器の Standby、Ready の変更ができません。

 ⑤ 右下のアイコンが黄色になり、ガスやターボガスの加熱、LC のポンプ等が止まり ます。

※ イオンソースの熱を上げるなど機器の平衡化が必要な場合は、メニューの Acquire>Equilibrate を選択し、開いた画面で平衡化に使用するメソッドを選 択し、平衡化を行います。

3.3 最適化

ここでは基本となる測定用の MS メソッドを作成します。

測定用 MS メソッドを作成するには、A)MS 内部パラメータと B)イオンソース パラメータの 2 種類の最適化を行います。まず MS 内部パラメータの最適化を行 い、その後イオンソースパラメーターの最適化を行います。

A) MS内部のパラメータの最適化

- DP、EP、CE、CXP などの MS 内部パラメータを最適な値に設定します。
- シリンジポンプを使って、一定の低流速で対象標準物質の溶液を持続注入しながら最適化を行います。※この操作を Infusion(IF)の最適化と呼びます。

【ヒント】

✔この最適化は成分ごとに行う必要があります。

- ✓可能な限り単成分の標準液を使用します。
- ✓イオン源の種類(ESI または APCI)が変わっても、最適化し直す必要は ありません。※APCIでの最適化は別冊の APCI 操作ガイドをご参照ください。
- B) イオンソースのパラメータの最適化
- CUR、CAD、IS、TEMP、GS1、GS2 などを最適な値に設定します。
- カラムを付けない状態で LC/MS として複数回注入動作を繰り返しながら最 適化を行います。
- この操作を FIA (Flow Injection Analysis)の最適化と呼びます。

【ヒント】

✓20成分まで同時に測定できます。

- ✓イオン源の種類やLC条件(流速や溶媒比率)が大きく変更された際には、 最適化し直します。
- Training では Reserpine 標準物質を用いて最適化~定量までを説明していき ますが、他の成分でも同様の手順にて測定を行うことが出来ます。

Calculator を用いたモノアイソトピック質量(精密質量)と平均分子量の計算方法

※ 目的の化合物のモノアイソトピック質量を計算する方法です。

- ① Tools メニューから Calculators を選択します。
- ② Mass Property のタブをクリックし、Formula に計算する組成式(アダクトを加味 したもの)を入力します。
- ③ Calculate をクリックすることで、Exact Mass にモノアイソトピック質量が表示されます。(平均分子量は Average Mass に表示されます。)

*	Calculators						
E	ð						
Ele	emental Compositio	n Hypermass	Element	al Targeting	Mass Propert	У Isotopic D	istribut
	Formula	coolu				609 6997	
	Formula.	▼ U33H	40N209	Average m	ass:	000.0007	
	Exact mass:	e	308.2734	Mass defec (mDa/100E	et:)a)	44.9640	
	Nominal mass:		608	Mass accu (ppm)	гасу:	N/A	
	Measured mass:		N/A	Mass accu (Da)	racy:	N/A	
	Calc	ulate	Exp	port to file		Help]

MS 内部のパラメータの最適化(インフュージョンの最適化)

【Infusion 最適化の準備】

①標準物質の溶液を調製します。

※Infusionの最適化時に使用する標準液の目安となる濃度

機種	濃度
API 2000 [™] 、 QTRAP [®]	1000ng/mL
API 3000 [™] API 3200 [™] 3200 QTRAP [®] API 4000 [™] 4000 QTRAP [®] Triple Quad [™] 4500 QTRAP [®] 4500	100ng/mL
API 5000 [™] , Triple Quad [™] 5500, QTRAP [®] 5500, Triple Quad [™] 6500, QTRAP [®] 6500	10ng/mL

② 標準溶液を、1mLのシリンジに詰めます

- ③ シリンジポンプにセットします。
- ④ ターボイオンスプレーが装着されていることを確認します。
- ⑤ イオンソースのタイプは Analyst[®]ソフトウェア上の右下マスのアイコンをダブル クリックすると表示されます(P.3-1参照)。
- ⑥ シリンジから繋がるピークチューブをイオンソースへ接続します。
- ⑦ 以下を参考にスプレー位置を調整します。

- Edit Ramp... MS Method Acquire... Start ▼ 🗸 Use 🛛 Start Syringe Pump Parameter Source/Gas Compound MS Advanced MS Center / Width Import List Ion Source: Turbo Spray 2 2 Parameter Rang Ion Source Temperature Reached Q1 MS (Q1) Scan type 6 Period Summary Curtain Gas (CUR) 20.0 🌲 Scan rate 1000 5.000 Duration: (min) Delay Time: 이 (sec) IonSpray Voltage (IS) (5) 5500.0 🔶 Positive 2606 Cycles 3 🔘 Negat Temperature (TEM) 0.0 MCA (4)Ion Source Gas 1 (GS1) Start (Da) Stop (Da) 20.0 🌲 Time (sec) Number of scans to sum: Ion Source Gas 2 (GS2) 660.000 0.0
- ① Tune and Calibrate モードの Manual Tuning をダブルクリックします。

- ② 左側は初期値のままとし、右側の Scan type が Q1MS になっていることを確認して ください。
- ③ Positive モードあるいは Negative モードを選択します。

※ Reserpine の場合は、Positive を選択します。

 ④ Scan type の右側の Start および Stop にスキャンする幅を入力します。Reserpine (分子量 608)の場合、Start-Stop には 590から 660 までを入力します。

【ヒント】

- ※ 分子量の 10Da 程度小さい値から、50Da 程度大きい値 (アダクトイオンを確認するため)を入力します。
- ※ 複数の化合物を同時に最適化する場合、すべての化合物が見られる範囲とし ます。
- ⑤ Scan rate を 1000Da/s に設定します。

【注意】

- ※ Software の version により Scan rate が設定できない場合があります。この場合、Time に Scan 1 サイクルあたりの時間(秒)を入力してください。時間の目安は Scan 間隔が 300~400 で 1 秒程度(Training の Reserpine では 0.2 程度になります。
- ⑥ 画面中央下部の Durations に測定時間を入力します。
 - ※ 通常持続注入が安定しているかどうかを確認するためには5から10分程度を 入力します。
- ⑦ 左上の Start をクリックし、測定を開始します。

※ 測定データは保存されません。

⑧ 以降を参考に流速は、5~10µL/min 程度でシリンジポンプをスタートします。

【ヒント】

※ 最初はチューブの中にエアが入っているので、スペクトルがとびとびになる ことがありますが、しばらく経つと安定します。急ぐ場合は、シリンジを少 し手で押すか、流速を最初のうちだけ上げることで、安定するまでの時間を 短くすることが出来ます。

<u>シリンジポンプのスタート方法-2</u>

API 3000^{TM、}API 4000^{TM、} 4000 QTRAP[®]及び API 5000TM

シリンジポンプが内蔵されていませんので、Manual Tune 画面からは制御できません。シ リンジポンプ本体のボタンで操作を行います。

- ① 外付けのシリンジポンプの電源を入れます。
- ② SET ボタンを押した後、流速を入力し、Enter ボタンを押します。
- ③ 続けて diam ボタンを押してシリンジ内径を入力し、Enter ボタンを押します。
- ④ Run/Stop ボタンを押して、シリンジポンプをスタートさせます。
- ⑤ シリンジポンプを止めたいときは、Run/Stop ボタンを再度押します。
- ⑥ 納品時付属の1mL ガスタイトシリンジ(ハミルトン社製)の Syringe Diameter (内 径) は 4.61 mm です。

⑨ 以下の4項目を確認します。自動最適化を実行するためには、以下の条件が満たされている必要があります。

- a. 左下のクロマトグラム画面の TIC が安定していること
- b. Positive、Negative Mode のどちらでイオン化するか確認すること
- ※ トレーニングで使用する Reserpine の場合、Positive モードの方が よりイオン強度が高くなります。(*m/z* 609)
- c. 目的化合物由来のイオンが観測されていること
- d. 目的化合物由来のイオンのイオン強度が 105~106cps の間であること

※ Positive、Negative Mode 共に、対象化合物の感度が 10⁵~10⁶cps の間に入ら ない場合は、標準溶液の濃度を調整してください。

- 10 確認後、Stop をクリックします。
- Manual tuning 画面を閉じます。
 - ※ 画面を閉じる時に保存するかどうかの警告がでますので、Noで閉じます。

【重要】

※ シリンジポンプは止めずに動いたままにしてください。

Infusioin を用いた MS 内部パラメータの最適化

Compound Optimization で MS 内部(真空部内)のパラメータの最適化を行います。 (MRM 測定メソッドの作成)

- ※ 目的の化合物のモノアイソトピック質量(0価)が必要になります。わからない 場合は、前述の 'Calculator を用いたモノアイソトピック質量(精密質量)と平 均分子量の計算方法'の項を参考に組成式から事前に計算してください。
- ① ナビゲーションバーの Compound Optimization をダブルクリックします。
- ② Instrument Optimization 画面で Inlet に Infusion を選択します。
- ③ Mass Spectrometer の MS/MS Analysis を選択します。

🗝 🝽 to 🖄 🚢 🖉 🌒 🚨 👊	≞≝≝≝≁≈≈⊽т≈∣←→≁≄₫	λ ∧ A ^y
E Configure	Instrument Settings	
Security Configuration	Please set the instrument condition:	
Hardware Configuration	lolet:	Mass Spectrometer
S Report Template Editor	Infusion	MS Analysis
((U)) Tupe and Calibrato	◯ FIA	MS/MS Analysis
	Default Acq. Method:	
A Instrument Optimization	Back Code:	
A Manual Tuning	Hour code.	*

- ④ Next で次の画面に進みます。
- ⑤ Precursor Ion の欄は、MW Ion を選択し、±0.7 を入力します。
- ⑥ Polarity の欄は、Positive を選択 します。
 - ※ Negative モードでイオン化 が確認された場合は、
 Negative を選択します
 - ※ Positive、Negativeの両方で イオン化が確認された場合 は、Bothを選択します。
- ⑦ Product Ion の欄は、Auto Select を選択します。
- Auto select の右側 Criteria をク リックします。

MW Ion Search Window: ± 0.700 (Date: 1.100)	a)
Base Peak Ion Search Range: 30.000 to Compound Name: resempine	© Both
Resolution: Unit 🔹	
Product Ion: User Specified Auto Select Criteria	
Resolution: Unit	

- ⑨ 下記を参考に各数値を入力します。
 (Training では右のように入力してください。)
 - For the Most Intense :

4~6を入力します。検出さ れたプロダクトイオンのう ち、強度の高い方から順に 何番目までを候補とするか を設定します。

Build final method using :

4~6 を入力します。一段目で候補となったプロダクトイオンのうち、強度の 高いほうから順に何番目までをメソッドに登録するかを設定します。ここに 入力できる値は一段目の数値以下の値となります。

• Exclude Product Ions within :

5 を入力します。プリカーサーイオンから最低何マス減ったものを候補とする かを設定します。脱水されただけのプロダクトイオンを使用しないようにす るには 20 程度を入力します。

Min for Product Ion :

50 を入力します。候補とするプロダクトイオンの最小値です。小さいプロダクトイオンは測定に不利になる場合があるので、50 が推奨されますが必要に応じて下げてください。

Threshold for Product Ion : プロダクトイオンの強度の閾値です。0のままでご使用ください。

- OK をクリックし、元の画面に戻ります。
- ① Next で次の画面に進みます。
- 12 Target Compound 画面で、測定対象の名称 (Compound Name) と分子量 (MW、 モノアイソトピック質量)、価数 (No. Charges) を入力します。
 - ※ 入力する化合物数は、5化 合物程度までが適当です。
 - ※ 分子量(MW)には、モノア イソトピック質量(0 価、 +1 でも・1 でもない値)を 入力します。モノアイソト ピック質量は平均分子量 とは異なります。

ar	arget Components					
	Please	enter the target components to	optimize:			
		Compound Name	MW (Da)	No. Charges		
	1	Reserpine	608	1		
	2					
	3					

- ※ モノアイソトピック質量は、Analyst の Calculators 機能を使用すると簡単に 計算できます。前述を参考に計算してください。
- Finish をクリックすると最適化が始まります。

- ※ 複数化合物を同時に最適化している場合、基準に入らなかったものだけを外 して、再度行うこともできます
- ※ 最適化中、画面に最適化中のログとデータが表示されます。
- ※ 測定対象が濃すぎる、または薄すぎると、画面に警告が出て最適化が停止し ます。この場合、溶液を希釈、または濃いものを再調製し、再度最適化を行っ てください。
- - ※ 最適化が終了すると、測定物質名_Qopt_FinalMRM_Pos.dam という名称の ファイルが自動作成されます。
 - ※ Training では Reserpine_ FinalMRM_Pos.dam が作成されます。
 - ※ 自動最適化中にできたメソッドは、Acquisition Method フォルダに、Data は Data フォルダに、ログは Log フォルダに保存されます。
 - ※ 自動作成されたこれらのファイルを Analyst[®]ソフトウェアから確認するには、 以下の方法で File type を変更して開いてください。
 - Acquisition Method File の場合:

Open File→Files of type から Acquisition Method (*.dam) を選択します。

■ Data File の場合:

Open File→Files of type から Wiff Files (*.wiff) を選択します。

■ Log File の場合:

Open File→Files of type から Report Files (*.rtf) を選択します。

- 開いている画面をすべて閉じます。
- Manual Tuning をダブルクリックして Manual Tune 画面を起動し、Stop Syringe をクリックして、シリンジポンプを停止します。

イオンソースの最適化を行う(FIA の最適化)

※ 必須ではありません。イオン源パラメータ初期値で測定し、期待の感度に達 していない場合などに行います。

【FIA の準備】

① LC 移動相を準備します。

※ 実際の測定時に使用する LC 溶媒を推奨します。

- ② 標準溶液を準備します。
 - ※ 標準溶液濃度の目安は下記をご参照ください。

機種	濃度
API 2000 [™] 、QTRAP [®]	100ng/mL
API 3000 [™] 、API 3200 [™] 、3200 QTRAP [®] 、API 4000 [™] 4000 QTRAP [®] 、Triple Quad [™] 4500、QTRAP [®] 4500	10ng/mL
API 5000 [™] 、Triple Quad™ 5500、QTRAP [®] 5500、 Triple Quad™ 6500、QTRAP [®] 6500	1ng/mL

【ヒント】

- ※ Infusion 時の 1/10~1/1 濃度の標準液を使用します。
- ※ Training に使用する LC 移動相と標準液 Reserpine については、講義資料の その他の Tips の項を参照ください。
- ③ LC と MS を接続します。
- ④ カラムオーブンから出ているピーク
 チューブは、直接イオンソースに接続して下さい。
- 前述の "スプレー位置の調整"の LC/MS の測定時の項を参考にスプレー位置を調 整します。

【機器設定の変更】

- ⑥ Analyst[®]ソフトウェアの右下のアイコンが緑になっている場合は、Queue Manager が表示されている状態で、メニューから Acquire>Standby を選択し、アイコンを黄色にします。(黄色の場合は②に進みます。)
- ⑦ Configuration を切り替えるため、Hardware Configuration をダブルクリックします。
- ⑧ 開いた画面で MassSpecOnly を選択して、Deactivate Profile をクリックします。
- ⑨ LCのポンプ及びオートサンプラーを制御する Profile を選択し (Mass + LCなど)、 Activate Profile をクリックします。

- Mass + LC 以外の名前がついている場合は ekspert 100-XL など、お使いの LC システムが接続されている profile を選択します。
- ① 上記⑨で選択した Profile に緑色のチェックが点灯したことを確認後、 Close をク リックして、Hardware configuration を閉じます。

【FIA 用のメソッドの作成】

- ① File メニュー>Open で file type として Acquisition Method を選択します。
- ② インフュージョンで最適化したメソッド 測定物質名_Qopt_FinalMRM_

Pos.dam を選択します。

- ③ Training では Reserpine_Qopt_FinalMRM_Pos.dam という名称のファイルを選択 します.
- ④ Acquisition Method 上を 右クリックし、 Add/Remove Device Method を選択します。

Acquisition method	
🖃 🎒 Acquisition Method	Add/Remove Device Method

⑤ ご使用の LC システム、またはデバイス全てにチェックを入れ、OK をクリックします。

<u>○Eksigent100/110 シリーズの場合</u> <u>○ExionLC の場合</u>

Add/Remove device methods.

ACQUITY UPLC System

QTRAP 4500

Add/Remove device methods.

○島津製作所の場合

○Agilent の場合

⑥ バルコバルブが含まれている場合、Integrated
 Valco Valve の Use のチェックを外し、Valco
 Valve が含まれない状態にします。

- ⑦ Acquisition Method ${\mathfrak E} {\mathcal I} {\mathbb V} {\mathcal V} {\mathcal I} {\mathbb V} {\mathfrak I} {\mathbb T} {\mathfrak I}$
- ⑧ Synchronize Mode を LC sync にします。
 - ※ LC sync へ変更することにより、オートサンプラーの注入開始と同時に MS の測定が開始されます

Acquisition Method:		
Acquisition method	Acquisition Method Properties Comment: Duration (min): Synchronization Mode:	1.000 LC Sync

- ⑨ Mass Spec をクリックします。
- Duration (測定時間、min) に 1min、Time に適当な値(以下のヒント参考、Training では 1000msec) と入力します。

【ヒン】	F]				
*	Time とは Dwell Tim 全ての成分を足すと 1	ne を打 000m	^{皆します。]} isec 程度に	FIA にて なるよう	多成分一斉分析を行う場合は、 に入力します。
*	 ※ 5成分同時分析の場合、200msec ずつになります。詳しくは後述の【Cycle Time, Dwell Time, Pause Time】を参照ください。 				
MS Advan	ced MS				
Experiment:	1		Scheduled MRM		Import List
Scan type:	MRM (MRM)				
		1	Q1 Mass (Da)	Q3 Mass (0 195.149	Ja) Time (msec) ID
Polarity	Pasitive	2		100.110	
	Negative				
				_	
					Period 1 Experiment 1 Parameter Ta 🔀
					Source/Gas Compound
Total Scan Ti	ma				Ion Source: Turbo Spray
(includes pau:	ses): 1.0050 (sec)	L		Period	
Edit Parar	meters	Durat	tion: 1.005	(min)	Curtain Gas (CUR) 40 🗘
•••••		Cycle	s: 60	÷	Collision Gas (CAD) 4
					IonSpray Voltage (IS) 5000.0 🗘
1 Edit	Parameter をクリック	しまっ	す。		Temperature (TEM) 500 🗘
		6 U		0 X	Ion Source Gas 1 (GS1) 50 🗘
(四) 開い	た画面で Source/Gas を	ミクリ	ックし、次イ	~>	Ion Source Gas 2 (GS2) 80 🗘
以降の知	の表に記載されている」	FIA 月	用のイオン	リース	Interface Heater (lihe) On
U) A)	労値を八刀しよう。				
					Apply the following parameters to all other experiments of
					the same polarity. Source/Gas Compound

<イオン源パラメータ初期値>

	設定範囲	TurbolonSpray [®] Source (5uL/min, Infusion)	TurbolonSpray [®] Source (200uL/min, FIA)	Heated Nebulizer (1000uL/min)
CUR	10~55	25	40	45
CAD	0~12	4	4	4
IS	0~5500	5500(-4500)	5500(-4500)	N/A
NC	0~5500	N/A	N/A	2(-2)
TEM	0~550	0	300	300
Gas1	0~90	25	50	60
Gas2	0~90	0	80	15
Interface Heater	1[on], 0[off]	1[on]	1[on]	1[on]

※カッコ()内は Negative モード時の設定値を表します。

※Negativeの IS の下限は-4500 です。

※TISの設定温度(TEM)は最大 500℃までにしてください。

550℃でも使用できますが、ヒーターの寿命が短くなりますので推奨しません。

API 3000^{TM}

	設定範囲	TurbolonSpray [®] Source (5uL/min, Infusion)	TurbolonSpray [®] Source (200uL/min, FIA)	Heated Nebulizer (1000uL/min)
NEB	1~15	8	14	10
CUR	6~15	8	10	10
CAD	0~12	4	4	4
IS	0~5500	5500(-4500)	5500(-4500)	N/A
NC	0~5	N/A	N/A	2(-2)
TEM	0~550	0	300	300
外付け Turbo ガス	0~	0	6L/min	50psi

※カッコ()内は Negative モード時の設定値を表します。※Negative の IS の下限は-4500 です。

API 3200TM および 3200 QTRAP®

	設定範囲	TurbolonSpray [®] Source (5uL/min, Infusion)	TurbolonSpray [®] Source (200uL/min, FIA)	Heated Nebulizer (1000uL/min)
CUR	10~50	20	20	20
CAD	0~12	3	3	3
IS	0~5500	5500(-4500)	5500(-4500)	N/A
NC	0~5	N/A	N/A	2(-2)
TEM	0~750	0	300	300
Gas1	0~90	20	70	60
Gas2	0~90	0	60	N/A
Interface Heater	1[on], 0[off]	1[on]	1[on]	1[on]

※カッコ()内は Negative モード時の設定値を表します。

※Negative の IS の下限は-4500 です。

※TIS の設定温度(TEM)は最大 700℃までにしてください。

750℃でも使用できますが、ヒーターの寿命が短くなりますので推奨しません。

	·	8	8	
	設定範囲	TurbolonSpray [®] Source	TurbolonSpray [®] Source	Heated Nebulizer
		(5uL/min, Infusion)	(200uL/min, FIA)	(1000uL/min)
CAD	0~12	4	4	4
CUR	10~50	20	30	45
Gas1	0~90	20	50	60
Gas2	0~90	0	80	N/A
IS	0~5500	5500(-4500)	5500(-4500)	N/A
NC	0~5	N/A	N/A	2(-2)
TEM	0~750	0	300	300
Interface Heater	1[on], 0[off]	1[on]	1[on]	1[on]

API 4000TM, 4000 QTRAP[®]

※カッコ()内は Negative モード時の設定値を表します。

※Negativeの IS の下限は-4500 です。

※TISの設定温度(TEM)は最大 700℃までにしてください。

750℃でも使用できますが、ヒーターの寿命が短くなりますので推奨しません。

API 5000^{TM}

	設定範囲	TurbolonSpray [®] Source (5uL/min, Infusion)	TurbolonSpray [®] Source (200uL/min, FIA)	Heated Nebulizer (1000uL/min)
CAD	0~12	4	4	4
CUR	10~50	20	30	45
Gas1	0~90	20	50	60
Gas2	0~90	0	80	N/A
IS	0~5500	5500(-4500)	5500(-4500)	N/A
NC	0~5	N/A	N/A	2(-2)
TEM	0~750	0	300	300
Interface Heater	1[on], 0[off]	1[on]	1[on]	1[on]

※カッコ()内は Negative モード時の設定値を表します。

※Negative の IS の下限は-4500 です。

※TIS の設定温度(TEM)は最大 700℃までにしてください。

750℃でも使用できますが、ヒーターの寿命が短くなりますので推奨しません。 Triple Quad[™]4500、QTRAP[®] 4500、Triple Quad[™]5500、QTRAP[®] 5500 Triple Quad[™]6500、QTRAP[®] 6500

	設定範囲	TurbolonSpray [®] Source (5uL/min, Infusion)	TurbolonSpray [®] Source (200uL/min, FIA)	Heated Nebulizer (1000uL/min)	
CAD	0~12	9	9	9	
CUR	10~50	20	30	45	
Gas1	0~90	20	50	60	
Gas2	0~90	0	80	N/A	
IS	0~5500	5500(-4500)	5500(-4500)	N/A	
NC	0~5	N/A	N/A	2(-2)	
TEM	0~750	0	300	300	
Interface Heater	1[on], 0[off]	1[on]	1[on]	1[on]	

※カッコ()内は Negative モード時の設定値を表します。

※Negative の IS の下限は-4500 です。

※TIS の設定温度(TEM)は最大 700℃までにしてください。

750℃でも使用できますが、ヒーターの寿命が短くなりますので推奨しません。

③ 以降の各 LC の入力方法を参考に以下の LC 条件を入力します。

カラム	なし				
移動相 :A :B	0.1%ギ酸を含む精製水、または0.1%酢酸を含む精製水 アセトニトリル、またはメタノール				
グラジエント					
Time [min.]	0	1.0			
A [%]	50 50				
B [%]	50 50				
<u> 流速(µl/min</u>)	200				
カラム温度[℃]	40				
サンプルクーラー[°C]	5				
注入量 [µL]	1	0			

Cite state the second s	Time table Se	ttings		
File Help Time table Settings No: Time (m.mm): Flow (ml/min): %A: 01 0.00 0.2 50 50 50	Max. pressu Equilibration Solvent for J 2: Aq Solvent for J 0 1: Dr 2: Dr	ure: pump A: jueous 1 jueous 2 pump B: ganic 1 ganic 2	124000 kPa 0.00 min	
 ⑦ Column Oven をクリックします。Colur 条件を設定します。 ⑧ Fileメニュー > Save を選択し、上書き す。 	nn Oven 保存しま	e ekspert ul File Hel	traLC 100-XL: Rese p Temperature con Temperature Enabled: Temperature	rrpine_FIAdam* ttrol control setpoint (*C): 40

- ① Sciex LC System をクリックします。
 - ※ バツマークが入っている場合はその上を右クリックし、Use を選択します。 ださい。
- ② Binary Gradient タブをクリックします。

(4) Autos	sampler タブをクリ	リックします	- 0				
5 Samp	ole Rack Settings a	シクリックし	ます。				
6 1.5m	⑥ 1.5mL バイアルの場合は、Needle Stroke を 52 mm に変更します。						
96we	11 プレートの場合に	t、Needle S	Stroke を	50 mm に変更します。			
 ⑦ Rinse (オー ⑧ 必要) 	e Settings の Rinse トサンプラーのニー こ応じて Rinsing V	Mode を B -ドル Wash olume、Rins	efore and a 時間)に se Method、	after aspiration に、R 0 sec を入力します。 、Cooler Temperature	Cinse Dip Time を入力します。		
Binary Gradie (t. Auto	osampler Splumn Oven System Con Isampler	troller Direct	injection				
🗹 Autosampler		Sample r	ack settings		*_***		
-Injection settings –		Specit	fy rack		ime pri Iretreat		
Sampling speed:	5.0 µL/s		Туре	Needle Stroke [mm]	ment		
Cooler temperative	ature: 15 °C	Rack Rack 1.5	5mL 105 vials	52			
-Rinse settings —		Rack 1.5	imL 70 vials	52			
Rinse type:	External only	Rack 1m	nL Cool	51			
External	Referflow channels	Rack 4m	IL COOI IP 96 Cool	50			
Rinse mode:	Before and after aspiration, Din time:0s	Rack M1	FP 384 Cool	50			
Rinse pump method:	Rinse pump, then Port, Time:1s	Rinse mode:	Before and afte	er aspiration 💌			
		Rinse dip time:	Qs		- × -		
⑨ Inject	tion をクリックし注	- ^D onulaith 主入量を入力	1します。	Autosampler	10		
【注意】							
*	Injection Volume ができますが、50	は 100 と入 μL以上入フ	力すること りしないで	- ください。			
10 File X XTr	メニュー > Save a raining では Reser	us を選択し pine_FIA.da	、適当なフ am と入力	7ァイル名を入力し、借 します。	禄存します。		

① Shimadzu LC System をクリ	「ックします。	
※ バツマークが入っている	る場合はその上を右クリックし、	Use を選択します
② Pumps タブをクリックします	 0	
③ Pumping Modeから Binary Flow を選択します。	Pumps Autosampler Oven Controller Time Program Pumping Moder Binary Flow	
 ④ Pressure Limits の Maximum に適切な値を入 力します。 	Total Flow: 0.2 mL/min	Configured Pumps Pump A: LC-20AD Pump B: LC-20AD
 5 Flow (流速) 、B Conc.に適 当な値を入力します。 	Pump B Conc: 50 * Pump B Curve: 0	Pump D: NONE Pump D: NONE
※ 流速、移動相組成は、 実際に使用する組成、 流速を入力してくだ さい。		Pressure Limits (Pump A, B) Minimum: 0 psi Maximum: 120 psi
※ 将来、グラジェントで5 成を入力して下さい。	分析される場合は、対象成分が検	出される時の溶媒組
	min)、(= 50 (%) を入力して入	2010
6 Autosampler タフをクリック Pumps Autosampler Oven Controller Time Progra Model: SIL-20ACXR	・します。 m	
(6) Autosampler タフをクリック Pumps Autosampler Oven Controller Time Progra Model: SIL-20ACXR Rack Type: Undefined Detect	r します。 m t Rack	
(6) Autosampler タフをクリック Pumps Autosampler Oven Controller Time Progra Model: SIL-20ACXR Rack Type: Undefined Detect V Use Autosampler Rinsing Volume: 200 uL	r します。 am t Rack Rinse Pump Rinse Method: Rinse Pump Then	Port
(b) Autosampler タクをクリック Pumps Autosampler Model: SIL-20ACXR Rack Type: Undefined Object Detect Image: Sile Autosampler Detect Rinsing Volume: 200 Use Autosampler mm Rinsing Volume: 200 Vuge Time: 250 Purge Time: 25.0 Rinse Dip Time: 5 Seec Rinse Mode: Detect We Enable Cooler Unit Cooler Temperature: 4 Control Vial Needle Stroke: 52	n します。 Rinse Pump Rinse Method: Rinse Pump Then Rinse Time: 5 sa	Port v sc
 6) Autosampler タフをクリックク Pumps Autosampler Oven Controller Time Progra Model: SIL-20ACXR Rack Type: Undefined Detect ✓ Use Autosampler Rinsing Volume: 200 uL Needle Stroke: 52 mm Rinsing Speed: 35 uL/sec Sampling Speed: 5.0 uL/sec Purge Time: 25.0 min Rinse Dip Time: 5 sec Rinse Mode: Before and after aspiration Cooler Temperature: 4 00 Control Vial Needle Stroke: 52 mm ⑦ 1.5mL バイアルの場合は、Net 	r Lます。 am r Rack Rinse Pump Rinse Method: Rinse Pump Then Rinse Time: 5 34 on eeedle Stroke を 52 mm に変更し	Port ♥ ec
 (b) Autosampler タワをクリックク Pumps Autosampler Oven Controller Time Programo Model: SIL-20ACXR Rack Type: Undefined Detect ✓ Use Autosampler Rinsing Volume: 200 ul. Needle Stroke: 52 mm Rinsing Speed: 35 ul./sec Sampling Speed: 5.0 ul./sec Purge Time: 25.0 min Rinse Dip Time: 5 sec Rinse Mode: Before and after aspiration ✓ Enable Cooler Unit Cooler Temperature: 4 control Vial Needle Stroke: 52 mm ⑦ 1.5mL バイアルの場合は、Net 96well プレートの場合は、Net 1000 	r Lます。 am r Rack Rinse Pump Rinse Method: Rinse Pump Then Rinse Time: 5 3 a c n eedle Stroke を 52 mm に変更し eedle Stroke を 50 mm に変更し	Port re
 6 Autosampler タワをクリック Pumps Autosampler Oven Controller Time Program Model: SIL-20ACXR Rack Type: Undefined Detect V Use Autosampler Rinsing Volume: 200 ul. Needle Stroke: 52 mm Rinsing Speed: 50 ul./sec Sampling Speed: 50 ul./sec Sampling Speed: 50 ul./sec Rinse Dip Time: 5 sec Rinse Mode: Before and after aspiratic V Enable Cooler Unit Cooler Temperature: 4 0 0 Control Vial Needle Stroke: 52 mm ⑦ 1.5mL バイアルの場合は、Nee 96well プレートの場合は、Nee Stroke: 8 Rinse Dip Time (オートサンス) 	r Lます。 Rinse Pump Rinse Method: Rinse Pump Then Rinse Time: 5 3 3 eedle Stroke を 52 mm に変更し eedle Stroke を 50 mm に変更し com に変更し の プラーのニードル Wash 時間) に	Port Port *** ・ます。 します。 0 sec を入力します。
 6 Autosampler タワをクリックク Pumps Autosampler Oven Controller Time Program Model: SIL-20ACXR Rack Type: Undefined Detect V Use Autosampler Rinsing Volume: 200 ul. Needle Stroke: 52 mm Rinsing Speed: 50 ul./sec Sampling Speed: 50 ul./sec Sampling Speed: 50 ul./sec Sampling Speed: 50 ul./sec Rinse Mode: Before and after aspiratic V Enable Cooler Unit Cooler Temperature: 4 0 0 Control Vial Needle Stroke: 52 mm ⑦ 1.5mL バイアルの場合は、Ne 96well プレートの場合は、Ne 96well プレートの場合は、Ne ⑧ Rinse Dip Time (オートサンス) ⑨ 必要に応じて Rinsing Volume 	r Lます。 Rinse Pump Rinse Method: Rinse Pump Then Rinse Time: 5 3 3 eedle Stroke を 52 mm に変更し eedle Stroke を 50 mm に変更し com n Com N Com Com N Com Com N Com Com N Com Com Com N Com Com N Com Com Com N Com Com Com Com Com Com Com Com	Port *** Port ** ** ** ** ** ** ** ** ** ** ** ** **

- ③ Auto sampler p
- ④ 画面の右にオートサンプラーの設定(注入量、ニードルウォッシュの設定、冷却温度の設定など)が表示されますので、値を設定します。

	Acquisition method	Agilent Autosampler Properties	Advanced Properties			
	Acquisition Method Ø. Mass Spec 1.005 min Begerod 1.005 min Begerod 1.005 min Begerod 1.005 min Begerod 1.00 Autosampler Acilent 1100 LtC Binary Pump (1.0 mins) C Equilibrate (0.0 mins) Begerod 1.0 mins) Begerod 1.00 mins)	Inject Details Syringe Size (µl): Injection Volume (µl): Draw Speed (µl/min): Eject Speed (µl/min): Needle Level (mm): Temperature Control Enabled Serpoint (4 - 40 C):	100 Wesh Details 100 Image: Constraint of the second se	/ial		
5 F	 ⑤ File メニュー > Save as を選択し、適当なファイル名を入力し、保存します。 ※Training では Reserpine_FIA.dam と入力します。 					
[Water	s 社製 LC の場合】			Companion Software		
ી F ા	 File メニュー > Save as を選択し、適当なファイル名を入力し、Acquisition Method を保存します。 					
	※ Training では Reserpine_FIA.dam と入力します。					
2 A	Acquisition Method を閉し	じます。		MultiQuant 2.1		
30	Companion Software から	ACQUITY Met	thod Editor を	ekspert ultraLC 100-XL		

ダブルクリックします。

④ メニューバーの File から Open method をクリックし、Analyst で保存した メソッド「Reserpine_FIA.dam」を選択します。

e New method	Bun Timer 100 min	Look in:	Acquisition M	ethods 💌	G 🔌 📂 🛄 -	
Open method Save method Save method as Solvent Manager Print Fair Acetonitile Image: Solvent Manager Print Image: Solvent Manager Print Image: Solvent Manager Imag	Fron Line: 1.00 mm	Recent Places Desktop Libraries Computer	Name 4	am IA.dam	Date modified 2012/09/18 15-51 2012/09/19 15-51 2012/09/13 18:07 2012/09/13 22:50	▼ Type Analyst Analyst Analyst
23 4 5 5 6 Comment	Attriction Betroe injection After injection U		 File name: Files of type: 	Reserpine_FIAdam Data Acquisition Method files (".dar	n) v	Open Cancel

FIA 用に作成したメソッドで機器を平衡化する

- ① LC のラインが MS に接続されていることを確認します。
- ② 標準溶液の入ったバイアルをオートサンプラーに置きます。
- ③ ツールバーの ¹をクリックし、Queue Manager の画面を開きます。
- ④ ツールバーの をクリック、または Acquire メニューの Acquire > Equilibrate を選択し、装置を平衡化します。

【注意】

※ Queue Manager が開いている状態でないと、Equilibrate は行えません。

5	開い ソッ	た画面で、作成した FIA 用のメ ドを選択し、OK をクリックし	Equilibrate
	ます ※	Training では	Acquisition Method Reserpine_FIA.dam
		Reserpine_FIA.dam を選択し ます。	Time (Min.)
	*	この平衡化で、イオンソース の温度や LC が作動し始めま	complete the expected equilibration. You may wish to check the devices for completion after the equilibrate time.
	*	す。 イオンソース全体が温度平衡	OK Cancel Help

になるのに 10 分程度かかりますので、その後 FIA による最適化を始めます。

FIA によるイオンソースの自動最適化を始める

- Tune and Calibrate Mode の Compound Optimization をダブル クリックします。
- ② 開いた画面で FIA をチェックし、 FIA 用のメソッドをプルダウンメ ニューから選択します。
 - ※ Training では Reserpine_FIA を選択します。

- ③ Rack Code、Rack Position、Plate Code、Plate Position、Injection Volume に間 違いがないことを確認します。
- ④ Acquisition Method 作成時に注入量を指定しない LC の場合は、この画面で注入量 を入力します。
- ⑤ Next をクリックし、次の画面に進みます。
- ⑥ メソッド中にあるチャンネルとバ イアルポジションが表示されます。
 Compound Name に測定物質名、
 Vial Pos. にバイアルポジション
 を入力します。

※ Training では Compound Name には Reserpine、Vial Pos. には1と入力します。

【注意】

- ※ 入力行ごとにバイアルポジションを変えるとそれぞれの行(チャネル)に対 して、複数回の最適化を行います。この場合、最適化が終了した後、複数の メソッドに分かれます。
- ※ Int. Std.にチェックを入れると内部標準物質扱いになり、ピークの測定はされ ますが、最適化するにあたって考慮されません。
- ⑦ Next をクリックします。
- ⑧ 次ページを参考にパラメータとして検討する値を右側に入力します。
 - 1) 検討する値を 10;20;30 のようにセミコロンで区切って入力します。
 - 2) 最適化するパラメータは Optimize にチェックを入れます。
 - ※ パラメータが入力されていない場合は警告が出ます。値を入力してから再度 チェックを入れます。

×1 m1 · / /	、シの知道~	·				
API 2000 TM および QTRAP [®] (2) 最適			最適化	するパラメー	-タの (1) 検討する値を)	
			ptimize に	チェックを入れ	います。 10;20;30のようにセミ	
Please select th	ie Source Paramete	ers to optimiz	e III		コロンで区切って入力	
Para	ameter Name	Optimize	Current Val.	Values for Optimiz	zation Lat,	
1 Curtain G	}as		10.0	20;30;40;50		
2 Collision	Gas	~	3.0	3;;5;6;7;8		
3 IonSpray	[,] Voltage	 Image: A set of the set of the	5000.0	4500;5000;5500		
4 Tempera	ture	~	0.0	300;400;500		
5 Ion Source	ce Gas 1	~	20.0	30;4;50;60;70;80	550℃にするとヒーターが切れやすい	
6 Ion Source	ce Gas 2	~	0.0	30;40;50;60;70;80		
7 Interface	Heater		1.0			
J						
		~		<u> </u>		
Replicate Injecti	ion for each Param	eter: 💿	1 02 (3 04		
Total # of in	Total # of injections: 27 バージョンによっては、Oul と表示されますが、					
Total Sample	Volume: 0	ίμi)	(分	所は正常に行われ	ます。	

API 3000^{TM}

Nebulizer Gas	12;13;14;15;16
Curtain Gas	8;9;10;11;12
IonSpray Vol.	4500;5000;5500 ★
Temperature	300;400;500
Collision Gas	3;4;5;6;7;8
外付けターボガス	6 \sim 7L/min

※ API 3000[™] LC/MS/MS System では Interface Heater 及 び Ion Source Gas2 はありませ ん。

※ ネブライザーガス (NEB) が Ion Source Gas1 に相当します。

★ 移動相が高流速の場合は
 2000; 2500; 3000;3500;4000 あわせて検討ください。

API 3200TM および 3200 QTRAP®

Curtain Gas	10;15;20;25;30;35;40	750℃にナストレーターが
IonSpray Vol.	4500;5000;5500 ★	切れやすい
Temperature	300;400;500;600;700 -	
Gas1	30;40;50;60;70;80	▲ 投動力が宣法市の担合け
Gas2	30;40;50;60;70;80	▲ 移動相が高加速の場合は 2000; 2500; 3000;3500;4000 あわ
Collision Gas	3;4;5;6;7;8	せて検討ください。

API 4000TM、 4000 QTRAP[®]

Curtain Gas	10;20;30;40	
IonSpray Vol.	IonSpray Vol. 4500;5000;5500 ★	
Temperature	300;400;500;600;700	
Gas1	30;40;50;60;70;80	★ 移動相が高流速の場合は
Gas2	30;40;50;60;70;80	2000; 2500; 3000;3500;4000 あわ サて検討ください
Collision Gas	3;4;5;6;7;8	

API 5000TM

Curtain Gas	10;20;30;40	
lonSpray Vol.	lonSpray Vol. 4500;5000;5500 ★	
Temperature	300;400;500;600;700	
Gas1	30;40;50;60;70;80	★ 移動相が高流速の場合は
Gas2	30;40;50;60;70;80	2000; 2500; 3000;3500;4000 あわ せて検討ください。
Collision Gas	3;4;5;6;7;8	

Triple QuadTM 4500、QTRAP[®] 4500

Triple QuadTM 5500、 QTRAP[®] 5500

Triple Quad[™] 6500、QTRAP[®] 6500 30以下にするとオリフィスが 汚れやすい Curtain Gas 10;20;30;40 IonSpray Vol. 4500;5000;5500 ★ 750℃にするとヒーターが 切れやすい Temperature 300;400;500;600;700 Gas1 30;40;50;60;70;80 移動相が高流速の場合は \star 2000; 2500; 3000;3500;4000 あわ Gas2 30;40;50;60;70;80 せて検討ください。 **Collision Gas** 6;7;8;9;10;11;12

【注意】

- ※ Negative モードでの FIA では、IS は-4500 までしか入力できません。
- ※ Negative の IS の下限は-4500 です。Positive の IS 値のまま Negative で
- ※ 最適化を行うとエラーが発生します。Positive⇒Negative、または Negative ⇒Positive に変更して最適化を行う場合は、IS 値を入力し直してください。

 ⑨ 画面下部に Replicate Injection for each parameter (一つの条件につき何回測定す るか)にチェックを入れます。

※ Training では1にチェックを入れます。

【注意】

- ※ 画面下部に必要な容量が計算されますので、バイアルに充分量入っているこ とを確認してください。
- Next をクリックし、次ぐの画面に進みます。
- ① 次の画面は何も入力せず、Finish をクリックし、最適化を始めます。
 - ※ この画面は、DPなどのインフュージョンで最適化するパラメータについて値 を振って測定をする画面です。通常インフュージョンで最適化が終了してい ますので、入力、最適化の必要はありません。
- 2 終了後、"Compound Optimization Completely Successful"の画面が表示されますので、OKをクリックして最適化を終了します。
 - ※ 最適化が終了すると、(最初のメソッド名)_FIASample1.dam という名称の ファイルが自動作成されます。
 - ※ Training では Reserpine_FIA_FIASample1.dam となります。
- 13 開いている画面をすべて閉じます。
- 3.4 測定メソッド(Acquisition Method)の完成
 - ※ ここでは、2.で最適化した条件に LC 条件を入力し、測定メソッドとして完成 させます。
- ① Navigation Bar 上で Acquire をクリックし、Acquire モードにします。
- ② メニューの File>Open から画面を開き、File type を Acquisition Method とし、FIA により最適化されたメソッドを開きます。
 - ※ Training では Reserpine_FIA_FIASample1.dam を選択してください。
- ③ 以降の各 LC の入力方法を参考に LC 条件を入力します。
 - ※ Training では以下の条件を使用します。

0	流速:0.2mL/min	Total Time (min)	Flow Rate (µl/min)	A (%)	B (%)	
0	Gradient 条件:右図	0.00	200	90.0	10.0	
-	Interation Volume: Ful	3.00	200	10.0	90.0	
0	Injection volume. oµL	3.01	200	90.0	10.0	
		6.00	200	90.0	10.0	

【Shimadzu UFLC の場合】

i. LC ポンプの設定を行います。Pumps タブをクリックし、Pumping Mode は Binary Gradient を選択し、Total Flow、Pump B に初期条件を入力します。

		Configured Pumps
Total Flow:	0.2 mL/min	Pump A: LC-20AD
Pump B Conc:	50 %	Pump B: LC-20AD
Pump B Curve:	0	Pump C: none
r anp b carro.		Pump D: none

ii. Autosampler タブをクリックします。

Aodel: SIL-20AC	/HT				
Rack Type: Undefined		Detect Rack			
🗹 Use Autosampler			Rinse Pump		
Rinsing Volume:	200	uL	Rinse Method:	Rinse Pump Then Port	
Needle Stroke:	52	mm	Rinse Time:	1 sec	
Rinsing Speed:	35	uL/sec			
Sampling Speed:	15.0	uL/sec			
Purge Time:	25.0	min			
Rinse Dip Time:	5	sec			
Rinse Mode:	Before and a	fter aspiration 🛛 🔽			
🗹 Enable Cooler Unit					
Cooler Temperat	ure: 4	* 0			
Control Vial Needle S	roke: 52	mm			

- iii. Rinse Dip Time (オートサンプラーのニードル Wash 時間)に 0 sec を入力します。
- iv. Rinse Dip Time は、0 sec に設定しても動作します。0 sec の場合、液につけてす ぐに引き上げます。
- v. サンプル温度 (Cooler Temperture)を設定します。
- vi. Rinse Mode を Before and after aspiration にします。2 液洗浄の場合は、Rinse Method を Rinse Pump Then Port にします。
 - Before and after aspiration: 注入前後にニードル洗浄します。
 - Rinse Pump Then Port: 2 液⇒1 液という順で洗浄します。

vii.	Oven を選択し、条件を設定します。	Pumps Autosampler Oven Controller Time Program
		Model: CTO-20A
		Enable Oven
		Oven Temperature: 40 C
		Maximum Temperature: 85 C

④ Mass spectrometer をクリックし、Duration に測定時間を設定します。通常、LCの測定時間に合わせます。

Experiment: Scan type:	1 MRM (MRM)	•	0	- Scheduled N Enabled Basic () Adv	IRM anced	Imp	ort List		
					Perio	d Summary-			
- Polarity		(4)	Duratio	n: 6.000	(min)	Delay 1	lime: 0	(sec)	
	Positive Negative		Cycles:	571		Cycle:	0.63	00 (sec)) (
				Q1 Mass (Da)	(Da)	; Time (msec)	ID	CE (volts)	ſ
			1	251.100	156.100	100.0	SDZ 1	21.000	
			2	251.100	108.100	100.0	SDZ 2	33.000	
			3	265.100	156.100	100.0	SMZ 1	23.000	
			A	265 100	108 100	100.0	SM7.2	37.000	

- 以下を参考に、Time に Dwell Time を入力し、Cycle Time が十分短いことを確認 します。
 - ※ Dwell Time は、クロマトグラムにおけるピークの溶出幅とデータポイント数 から換算して設定します。

- ⑥ 必要に応じて Valco Valve の設定を行います。下記は 0-2 分を A ポジション (Waste)、
 2-10 分は B ポジション (MS online)の設定です。
 - ※ Training では使用しません。

【注意】

- ※ Valve の切り替え時間は、MS の測定開始時間(0min)、終了時間(上のメ ソッドでは 12min)には設定しないでください。0-12 分の分析の場合、 0.5-11.5 分の間で切り替え時間を設定します。
- ※ Valve を使用しない場合は、Integrated Valco Valve 上を右クリックして Use のチェックを外します。
- ⑦ 上書きする場合は、そのまま Save し、名称を変える場合は、File>Save as を選択 し適当な名前で保存します。
 - ※ Training では Reserpine_Grad.dam と入力します。

3.5 測定

<u>カラムの接続</u>

① カラムを接続します。(Training では接続しません。)

<u>System の平衡化</u>

- 以下の方法で LC および MS を、測定に使用するメソッドの初期条件で動作します。この操作で、System を安定させます。
- ① Acquire モードをクリックし、Acquire にします、**T** の場合はクリック **T** に変更します。(既になっている場合は必要ありません。)
- メニューの Acquire>Equilibrate を選択、 あるいは、ツールバーの イコンをクリックします。

<u>A</u> cquisition Method	Reserpine.dam
<u>T</u> ime (Min.)	1 *
Please ensure that the complete the expected You may wish to chec	e equilibrate time is long enough to allow all devices to d equilibration. k the devices for completion after the equilibrate time.

⑤ 設定した時間後、右下の Status barのMSアイコンが、緑色のReadyの状態になるのを確認します。

<u>Batch の作成</u>

- 以下の方法で測定するサンプルの情報(サンプル名、バイアル番号等)を入 力します。Submit することで Queue Manager に登録します。(この操作で 測定待ちの状態になります。)。
- ① Build Acquisition Batch をダブルクリックします。デフォルトの Batch が開きます。
- Acquisition に測定に使用するメソッドを選択します。
 - ※ Training では Reserpine.dam を選択します。
 - ※ Method Editor ボタンで選択されたメソッドの編集・確認が出来ます。

Sample L	ocations Quantitation Submit			
Select	t Method for Sample Set		- Quantitation	3
Set	SETI	~	none	Quick Quant
	Add Set Remove Set Add Samples Del Samples	Acquisition	Reserpine	Method Editor
				2

- 必要に応じ、Quantitation で none が選択されている 状態で Quick Quant をク リックします。
 - ※ この操作で濃度や IS(=Internal Standard)の設定が できるようになり、 解析時に入力の必要 がなくなります。

Gr	eate S	iemi-Automatic Quar	titation Method		
	Data Sou Internal 9	urce: Period 1 / Expt. 1	▼ V_	Smoothing Width: 3 💽 poir	nts.
4	1 2 3	Name minoxidol (6)	Q1 / Q3 210.200 / 164.200 (4)		
	Analytes	/			_
		Name	Internal Standard	Q1/Q3	
	1 2 3	Reserpine	minoxidol	609.400 / 164.200	

- ※ 行わない場合は、⑧にスキップください。
- ④ Q1/Q3の欄をクリックすると、測定メソッドに設定されているチャンネルが表示されます。該当するチャンネルを選択し、Nameに成分名を入力します。多成分一斉分析の場合には、全てのチャンネルをQ1/Q3で表示させ、それらの成分名を全て入力します。

※ Training では Reserpine1 成分のみとなります。

⑤ 定量解析を Analyst Software で行う場合、必要に応じて Default Smooth Width に てクロマトグラムにかけるスムージングの係数を設定します。

※ 定量解析を MultiQuant Software で行う場合、設定の必要はありません。

- ⑥ 内部標準を用いた定量を行う場合には、Internal Standard欄に内部標準物質のチャンネルと成分名を入力し、Analytes欄のInternal Standard にて該当する内部標準物質を選択します。複数の内部標準物質を設定することも可能です。
- ⑦ 全てを入力し OK をクリックすると、解析用メソッドの名称を入力する画面が表示 されます。入力し、OK をクリックします。
 - ※ Training では Reserpine と入力します。
 - ※ 解析用メソッド(Quantitation Method: *.qmf)は、測定用メソッド (Acquisition Method: *.dam)とは拡張子が異なりますので、同じ名称で も構いません。
- ⑧ Add Set をクリックし、Add Samples をク リックします。画面が開きます。
- ⑨ 測定する回数分の数字を Number Box に 入力します。
- ① OK をクリックするとその本数分だけ Batch に列が追加されます。
 - ※ Training では6を入力します。

ad Sample				<u> </u>
⊂Sample name- Prefix:	Sample		Sample number: Number of digits:	V 3
Data file Prefix: Sub Folder:	Data		Set name: Auto Increment:	♥ Browse
New samples - Number:	5			
		ОК	Cancel	Help

- Sample Name にサンプルの名称を入力します。
- ⑫ Rack Code でオートサンプラーのトレイを選択します。
- Vial Position にバイアルの番号を入力します。(Location Tab で確認、選択可能です。)
- ④ Data File 名を記入します。
 - ※ Data File 名が同一の場合、複数のデータが一つのファイル(.wiff ファイル)に 保存されます。Sample 名が同一でも、上書きされることはありません。

Batch Script						/	Selec	t Script
	Sample Name	Rack Code	Rack Position	Plate Code	Plate Position	Vial Position	Data File	Inj.¥olume (µl)
1	Blank	1.5mL Standa	1	1.5mL Stand	1	1	Curve	10.000
2	STD-0.6 ng/ml	1.5mL Standa	1	1.5mL Stand	1	2	Curve	10.000
3	STD-6 ng/ml	1.5mL Standa	1	1.5mL Stand	1	3	Curve	10.000
4	STD-60 ng/ml	1.5mL Standa	1	1.5mL Stand	1	4	Curve	10.000
5	STD-600ng/ml	1.5mL Standa	1	1.5mL Stand	1	5	Curve	10.000

- ※ 数値や文字を繰り返して入力する 場合には、繰り返したい範囲をド ラッグして選択、右クリックにて Fill Down を選択します。
- ※ 同様に AutoIncrement を選択する と、自動的にカウントアップされ た数字が入力されます。

 Guantitation タブをクリックして、サンプルの情報を入力します。Quant Type にて Blank、
 Standard 及び Unknownの選択を行い、成分名(Training では Reserpine と表示されています)の下に Standard の濃度を入力します。

	Sample Name	Quant Type	Reserpine
1	Blank	Blank	0.000000
2	STD-0.6 ng/mL	Standard 🔪	0.6
3	STD-6 ng/mL	Standard	6
1	STD-60 ng/mL	Standard	60
5	STD-600 ng/mL	Standard	600

16 必要に応じて、Batch を保存します。保存は File メニューから Save As...を選択 し名称を入力します。

- ① Submit タブをクリックし、Submit 画面に移行します。この画面では、情報の入力 は行わず、どのサンプルを測定するかの決定を行います。
 - ※ すべてのサンプルを測定する場合は、そのまま右上の Submit をクリックしま す。
 - ※ 一部を測定する場合は、選択し反転させた後、Submit をクリックします。
- ⑧ 選んだ部分を測定するか、全てを測定するかを選択し、OKをクリックします。

iubm Multi	it Status	onk one Data	file (DataSET1)						Submit	
	pic sampics and	only one bata								
	Sample Name	Rack Position	Plate Position	Vial Position	Acquisition Method	Quantitation	Data File	Set Name	Submit Status	
	Blank	1	1	1	Reserpine	Reserpine2	DataSET1	SET1	Not	
	STD-0.6 ng/mL	1	1	2	Reserpine	Reserpine2	DataSET1	SET1	Not	
	STD-6.0 ng/mL	1	1	3	Reserpine	Reserpine2	DataSET1	SET1	Not	
	STD-60 ng/mL	1	1	4	Reserpine	Reserpine2	DataSET1	SET1	Not	
	STD-600 ng/mL	1	1	5	Reserpine	Reserpine2	DataSET1	SET1	Not	
	waste1	1	1	6					Not	
	waste2	1	1	7	Acquisition				Not	
	waste3	1	1	8					Not	
	waste4	1	1	9	Acquire data for: -				Not	
1	waste5	1	1	10	Selected same	oles			Not	
	waste6	1	1	11					Not	
					○ All samples					
OK Cancel Help										

※ すでに Submit したことのあ るサンプルを再度 Submit し た場合には、警告があらわれ ます。問題なければ Yes をク リックします。

- ※ この操作により測定するサン プルと順序が決定されますが、そのままでは測定は始まりません。
- ツールバーの[™] (Queue Manager アイコン)をクリックし Queue Manager の画面 を開きます。

Z	🛣 Queue Manager [Local]								
	Acquiring Sample of 0 Period 0 O Durations Qu 0% 100% Elapsed Ready								
			Start Time		Sample Name	Plate Positi	Vial Positio	Status	Method
	1	X	2012/05/02	11:51:57	Blank	1	1	Waiting	Reserpine
	2	X	2012/05/02	11:56:58	STD-0.6 ng/mL	1	2	Waiting	Reserpine
	3	X	2012/05/02	12:01:59	STD-6 ng/mL	1	3	Waiting	Reserpine
	4	X	2012/05/02	12:07:00	STD-60 ng/mL	1	4	Waiting	Reserpine
	5	X	2012/05/02	12:12:01	STD-600 ng/mL	1	5	Waiting	Reserpine

 ※ 誤って Submit した場合は、Queue Manager 上を右クリック、ポップアップ メニューから Delete > Delete Batch で取消すことができます。

測定の開始

- ① メニューの Acquire>Start Sample を選択し、測定を開始します。
 - ※ 測定の途中で停止する場合は、Acquire>Abort Sample を、
 - ※ 測定時間を延ばす場合は、Acquire>Extend Period を選択します。

* Tuning モードが選択されている場合、Start Sample アイコンをクリックして
 も、下記のエラーメッセージが出てサンプルが Run できません。この場合、
 アイコンを1回クリックし、T に変更してください

Queue Manager X							
8	Instrument is in Tuning mode. Please reserve instrument for Acquiring, then select Start Sample to start your acquisition.						
	ОК						
*	オートサンプラーがインジェクションをする前に(Mass が Bun する前に)						

- ※ オートサンフラーがインシェクションをする前に(Mass が Run する前に)、 Abort Sample を選択しないでください。ツールバーのアイコンを操作できな くなることがあります。
- ※ 測定中の Data を Explore Mode で確認することができます。方法については 以降の"データの確認"を行うの項を参照ください。
- ※ Queue Manager の最後のサンプルを測定後、設定時間が経過すると、LCは 自動で止まり、MS は Standby の状態 idle(黄色いアイコン)に戻ります。

4 停止操作

① メニューバーの Acquire から Standby をクリック、あるいは Standby アイコンを クリックします。

<メニューバーからの方法>

<アイコンからの方法>

- ② ナビゲーションバーの Hardware Configuration をダブルクリックします。
- ③ 使用していた Profile を選択します。
- ④ Deactivate をクリックします。
- ⑤ Close をクリックします。
- ⑥ HPLC の電源を切ります。
- ⑦ 必要に応じて PC の電源を切ります。

5 データの確認

<u>データを開く</u>

- Project を、目的の Data の保存されている Project (Training では Example) に変 更します。
- ② Explore モードを選択し、Open Data File をダブルクリックします。
 - ※ Training では、Triple Quad フォルダ中の QuanData.wiff 中の API3-012 の データを使用します。
- ③ 目的のデータの Wiff ファイル>目的の Sample を選択し、OK をクリックします。
- 該当のデータファイルが開きます。

前後のクロマトグラムを表示する

- ① 上記の順序で該当のデータを開きます。
- ② 前後のクロマトグラムに移る場合は、メニューバー三段目のアイコン ← → クリックします。
 - ・ 左矢印 ← : 一つ前のクロマトグラムが表示されます。
 - 右矢印 → :次のクロマトグラムが表示されます。
 - 曲がった矢印
 ・データを選択する画面が開き、任意のクロマトグラムを 表示させることができます。

📕 Analyst - [XIC of + MRM (2 pairs): 400.000/200.000 Da from Sample 2 (API3-013) of QuanData.Wiff (Unknown Ion Source)]						
🛣 Eile Edit View Iools Explore Window Script Help						
🏠 📽 🖬 🚳 🖪 🖄 🖻 🛍 🗠 오브 🗄 Explore Mode 🔷 🗂 🔂 Example 🔷 🗸 📓 🗖 🗖 🎛						
🖆 😋 🍾 ← → 📌 🖀 沉 沉 沉 止 血 🖻 迦 拍 唱 小 🥐 淡 並 赤 単 油 評 唱 🍝 🦇 パ 沉 荒 🗹 杂 丼 ホ ッ マ 🌥 ホ	೫ 🕄 🛢 ∓ 🔛 →* ೫೧ ೫೫ ೫					

<u>クロマトグラムの抽出</u>

複数のトランジションで測定している場合、個々のクロマトグラムを抜き出すことが できます。

- ※ Training では Example の Project 内に保存されている Triple Quad フォルダ
 中の QuanData.wiff 中の API3-015 のデータを使用します。
- ① Explore モードを選択し、Open Data File をダブルクリックします。
- Triple Quad フォルダ中の QuanData.wiff 中 の API3-015 をクリックします。
- ③ OK をクリックします。

- ④ 開いたクロマトグラムを一度クリックします。
- ⑤ さらに右クリックし表示された画面上の Extract Ions をクリックします。
 【Tips】この操作は、*Extract Using Dialog* アイコン 洗 をクリックしても操作

- ⑥ クリック後、Extract ions 画面が表示され ますので、目的のチャンネル(Training では 400.0/200 および 420.0/220.0)をド ラッグして選択します。
 - ※ 複数のチャンネルを選択する場合、
 ドラッグまたはコントロールキー ([Ctrl])を押しながら該当する成分
 を選択してください。

例:start:500,stop:500.5 など

⑦ OK をクリックします。

Extract Ions	-X -
01 03 RT ID 400.000 200.000 420.000 220.000	Sort By: Q1 Mass
	el Help

⑧ 重ね書きされたクロマトグラムの下に、それぞれ抽出したクロマトグラムが表示されます。

<u>クロマトグラムを拡大する</u>

- Explore モードから Open Data File をダブルクリックし表示したいデータを開きます。
- ② 拡大したい範囲の軸上(枠の外側)をそれぞれドラックすることで、ドラックした 箇所が拡大されます。
 - ※ 全拡大を解除する場合には、*Home Graph* アイコン を選択あるいは、 各軸上をダブルクリックします。

拡大したい箇所をそれぞれドラックします。

分析時の測定条件を確認する

- Explore モードから Open Data File をダブルクリックし表示したいデータを開きます。
- ② Show File Info $\mathcal{T}(z)$ $\mathcal{D}(z)$ $\mathcal{D}(z)$
- ③ 分析条件など、データを取得した際の情報が表示されます。

- 【Tips】印刷する場合は、Print Pane(詳細は画面の印刷項目を参照)により すべての情報が印刷されます。
- 【Tips】情報が表示されないときは、Tools メニュー>Settings から Appearance Options の File Information Options タブを選択し、すべてのボックスに チェックを入れます。

画面を印刷する

- File メニュー>Print > Window、 Pane、 Workspace のいずれかを選択します。
 - Window:
 1データに表示している全画面のこと。
 - Pane:
 1データに表示している各画面のこと。
 選択されている Pane は青線で囲まれます。
 - Workspace:
 Exploreモードで開いている全データのこと。
- それぞれのプルダウンから Printer、 Report Template を選択し、部数を入力 して OK をクリックします。

A N	ChuluN	
	Ctri+N Ctri+N	🕒 🗄 Explore Mode
<u> Open</u> Open	Ctri+O	
Open Data File	Ctrl+D	
Open Proc <u>e</u> ssed Data F	ile	XIC of +MRM (2 pairs)
<u>C</u> lose		
Open <u>W</u> orkspace		XIC of +MRM (2 pa
Save Wor <u>k</u> space		
Save Workspace As		4000 1
Close Wo <u>r</u> kspace		
Carlos	Chulu S	월 2000 -
Serve A.	Cur+3	-
Save As		o 🖊 🗸 🗸 🗸
Save Processed Data <u>F</u> il	e	0.0 0.1
E <u>x</u> port		L
Drint & Report Setup		XIC of +MRM (2 pa
Print & Report Set <u>up</u>		
Print	,	Window Ctrl+W
		Pane Ctrl+P
Exit		Report Ctrl+A
🔨 Quantitation Wizard		Wedenses

Print		? 💌				
Printer						
Name:	Name: Send To OneNote 2010 Properties					
Status: Type: Where: Comment:	Ready Send To Microsoft OneNote 20' nul:	0 Driver Preview				
Print range (a) All (b) Pages (c) Selecti	from: to:	Copies Number of copies: 1 -				
Report Ter Default R * visible in	nplate PT	OK Cancel				

表示したクロマトグラムを閉じる

 画面上を右クリックし、Delete Pane をクリックし画面を閉じるか、もしくはメ ニューバーの Delete Pane アイコン をクリックします。

📇 Analyst - [XIC of + MRM (2 pairs): 400.000/200.000 Da from Sample 2 (API3-013) of QuanData.Wiff (Unknown Ion Source)]
🛣 Elle Edit View Iools Explore Window Script Help
📸 🛱 🖬 🚳 🖻 🖄 🖄 💼 🖹 🗅 🕮 🗉 Explore Mode 🔹 💼 😭 Example 🔹 🔹 👘 🖬 🖬 🖬 🖬 🖬
當⇔≈←→→畲双双咒山山圖迦神喝小學以並永與加神喝為學成儿儿口公共に安安本店業の♀♀、靈々咒並派

6 SCIEX OS Software を用いた定量解析

- ※ 本マニュアルでは SCIEX OS Software の Analytics モードを用いて解析を行 う方法を示します。Analyst[®] Software を使用する場合は Analyst[®] Software 用の Manual を、MultiQuant[™] Software を使用する場合は MultiQuant[™] Software 用の Manual を参照ください。
- 濃度既知の標準液から作成した検量線をもとに、濃度未知のサンプルの定量 を行います。
- 内部標準物質(IS)を使用した場合は、解析時に指定した内部標準物質によって 自動補正されます。
- Training では Project: SCIEX OS_Quad Data_Example 内の curve_sulfa の Data を使用し、以下を行います。
 - Sulfadiazine (SDZ), Sulfamerazine (SMZ)の検量線の作成 (内部標準物質 Sulfadimethoxine (SDMX)による補正)
 - o 未知試料中の SDZ と SMZ の定量

<参考> 検量線について

検量線(標準濃度曲線)とは、既知の 濃度の標準試料と未知の試料とを比較 することにより、未知の試料に含まれ る物質の濃度を求める手法です。検量 線は、検体(測定対象物質)の濃度の 変化に応じて検出器がどのように反応 するかを示したグラフ(分析シグナル) です。検量線を作成するために、未知

の検体の想定濃度を中心とする各種濃度で調整された標準物質を準備する必要があります。

<参考> 内部標準物質について

内部標準物質は、測定時の注入量、MSのイオン化時のサプレッションなどの効果を補 正するために使用します。生体試料など、複雑なマトリックス中で定量解析を正確に 行う必要がある場合に特に推奨されます。

<u><SCIEX OS Software Analytics モード定量画面></u>

<u><よく使用するアイコン></u>

Project: SCIEX (DSQuad Data_Example Projects Results	Repor	ting 👻 Views	•	Process Method 👻 🗙
	% ■ ♠ ■ ♠ ■ № ■ °c ■ II\ ■ C _e H _e	•		More	• • 🗟 🗙
	Displays the Peak Review		Displays the (Calibi	ration Curve
	クリックするとクロマトグラムが表		クリックす	ると	:検量線が
	示されます。		表示されます。		

② Projects 右の+をクリックします。

② ホーム画面に表示されている Analytics のアイコン

③ 開いた画面で、Project name 欄に該当する Project 名を入力します。

① 上部フォルダのアイコンをクリックし、右側に Status Bar を出します。

④ OK をクリックすることで Project が作成されます。

	Υ 🔟 🕕	New Project
Process Method ×	Projects	Type a project name.
	SFT V	Type a project name
	In Koot: D:\SCIEX OS Data	(4) OK Cancel

? _ = ×

6.3 Project の選択

起動します。

6.2 Project の作成

- ① 画面上部の Projects > 目的の Data の格納されている Project を選択します。
 - Training では SCIEX OS_Quad Data_Example を選択してください。

O - Analytics	☆ 🖄				8 🗁 ?-a×
	Project: SFT Projects	✓ Results	✓ Reporting ✓ Vie	ews	Projects
Samples Components and Groups	Options	~			SFT

- 6.4 初期設定の変更
- ① Projects をクリックし、Project Default Settings を選びます。
- Quantitative Processing では、図を参考に、定量解析に使用するアルゴリズム や積分条件、検量線の条件等を設定します。

6.1 SCIEX OS Software の Analytics の起動
① デスクトップ上の SCIEX OS Software アイコン SCIEX OS をダブルクリックし、

をクリックします。

 \sim

Analytics

- ③ Qualitative Processing では、下図を参考に定性解析に使用するライブラリー サーチや各種パラメーター等を設定します。
- ※ 各種設定は状況に応じて変更します。

ibrary Search						
Library Search Algorithm		Can	didate Search	1		~
Results Sorted By		Purity				~
Library Spectra Type		All S	pectra			~
Algorithm Parameters						
Precursor Mass Tolerance	+/-	0.4		Da		
Collision Energy	+/-	5		eV		
Retention Time	+/-	0.5		min		
Fragment Mass Tolerance	+/-	0.4		Da		
Ignore Isotopes In Unknown			Maximal N	Number Of Hits	5	
Vse Polarity			Intensity T	hreshold	0.05	
Use Collision Energy Spread			Minimal P	urity	10.0	%
Use Compound Specific Purity	Thresho	old	Intensity F	actor	5	

Set Project wide defaults for Integration Defaults	quantitati	ve proces
Integration Algorithm	MQ4	~
Integration		
Minimum Peak Width	3	points
Minimum Peak Height	0.00	
XIC width	0.02	Da
Gaussian Smooth Width	0.0	points
Noise Percentage	40.0	%
Baseline Subtract Window	2.00	min
Peak Splitting	2	points
Retention Time (RT)		
Expected RT	0.00	min
RT half window	30.0	sec
Update Expected RT	No 💙	
Report Largest Peak		
Units & Calibration Defaults		
Concentration units		
Regression parameter	Area 💙	
Regression type	Linear 💙	
Weighting type	1/x 💙	

6.5 Result Table の作成

① 画面上部の Results > New をクリックします。

			¥.	\bigcirc	Offline		? - @ ×	\$
Project: SCIEX OSQuad Data_Example Projects 🔹	Results 🔹	Reporting	•	Views	~	Process N	1ethod 👻 🗙)
	New							
	Open			e	e or openin	g an exis	sting one.	

② Process New Results 画面を開きます。(i)か(ii)の方法でデータを選択します。

(i) Select batch Samples to process で、Available から解析するデータを選択して 右矢印をクリックして Selected に移動します。

Training では curve_sulfa.wiff の全 Data を移動してください。

Process New Results	Process New Results X
1. Select batch samples to process Current Location: DASCIEX OS DataSCIEX OS Quad Data_Example/Data\ Annible	1. Select batch samples to process Current Location: DASCED: OS DataSCED: OS_Quad Data_Example3. Automited I TOURE I TABLENT I TOURE I TABLENT I TOURE I TABLENT I TOURE
2. Select a processing method	2. Select a processing method
8 Select a comparison cample for Nen, targeted workflow	Browse New Edit
Select a comparison sample for non-targeted workflow	<none></none>
Process Cancel Help	Process Cancel Help

- ■(ii) 開いた Process New Results 画面の上部右にある Browse ボタンをクリックし、
- 目的の Data が格納されている Project を選択します。

	X
Data_Example\Data\	Browse
Selected	
	Data_Example\Data\ Selected

③ Process New Results 画面の 2. Select a processing method で、以前に作成した Processing Method (定量解析用 Method) がある場合は Browse…をクリック、使 用する解析メソッドを選択し、Process をクリックし"6.6 Results Table の確認、編 集"に進みます。

Process New Results	🛐 Open Method 📧
1 Select batch complex to process	Search Quantitation Methods • 4 Search Quantitation Methods
Current Location: D:\SCIEX OS Data\SCIEX OS Ouad Data Example\Data\	Organize 🔻 New folder 🛛 🕄 🐨 🗍 🔞
Available Selected	Tempiter Name Date modified Type
	Provintis Deveniced: De
Fraces	File game: curve_sulfs_MQ4qmethod File game: curve_sulfs_MQ4qmethod Gamel

Processing Method が無い場合、次の「新規に定量解析用メソッドを作成し、Results Table を作成する方法」に進みます。(Training では新規に作成します。)

新規に定量解析用メソッドを作成し、Results Table を作成する

- Process New Results 画面の 2. Select a processing method の New をクリックします。
- ② 解析メソッドの編集画面が表示されます。

Process New Results	2
1. Select batch samples to process Current location: DASCIEX OS Data/SCIEX OS_Quad D - Available b T EFAB.wiff	ata_Ecample\Data\ Strewse
2. Select a processing method	Browse. New
Select a companison sample for Non-targete <none></none>	v worknow
	Process Cancel Help

 ③ Wokflow で、Quantitaion and targeted identification のチェックを外し、 Quantitaion にチェックが入っていることを確認します。代表サンプルが自動で選 択します。

[MQ4] Untitled Method								X			
Workflow	Select the workflow and then select	a reference sam	ple, if applical	ole							
Components	Quantitation										
Integration	Quantitation and targeted identification Non-targeted screening										
Library Search	The recommended Reference Sample has h	een automatically sele	cted. Change the	selection only	if required.						
Calculated Columns	Sample Name	Туре	251.2 / 10	265.2 / 92.0	in required			^			
	curve_sulfa.wiff (sample 1) - blank	Blank	0.00	0.00							
Flagging Rules	curve_sulfa.wiff (sample 2) - 0.1	Standard	0.10	0.10							
55 5	curve_sulfa.wiff (sample 3) - 1	Standard	1.00	1.00							
Advanced	curve_sulfa.wiff (sample 4) - 10	Standard	10.00	10.00							
	curve_sulfa.wiff (sample 5) - 100	Standard	100.00	100.00							
Formula Finder	curve_sulfa.wiff (sample 6) - Sample1	Unknown	0.00	0.00							
i officia i filder	cunia culfa wiff (cample 7) - cample?	Unknown	0.00	0.00				•			
Non-targeted Peaks	 XIC from curve_sulfa.wiff (sample 4) - XIC from curve_sulfa.wiff (sample 4) - 1 XIC from curve_sulfa.wiff (sample 4) - 1 	0, +MRM (3 transition 0, +MRM (3 transition 0, +MRM (3 transition	ns): 265.2 / 92.0 D ns): 311.2 / 156.3	Da a Da							
	0 1	·····	<u></u>	A	4.5	5.0					
	0.5 1.0	1.5 2.0 2.	.5 3.0 X value	3.5 4.0	4.5	5.0	5.5				
			X-value								
			Save	•	Close		Help				

- ④ Components をクリックします。化合物名、内部標準物質(IS)の情報を入力しま す。
 - ※ Training Data では、311/156 が IS になります。
 - ※ IS が無い場合は、入力は不要です。

[MQ4] Untitled Method											
Workflow	Selec	Select or verify the analyte and internal standard names and masses.									
Components Export Options							Options				
Integration	Row		Row IS Group Name		Chemical Formula	Adduct/Ch	Precursor (Q1) Mass (Da)	Fragment (Q3) Mass (Da)			
Library Search		1			251.2 / 108.2			251.15756	108.2		
		2			265.2 / 92.0			265.19239	92		
Calculated Columns		3	\checkmark		311.2 / 156.3			311.21171	156.3		
	•	4									

⑤ Integration をクリックします。代表サンプルの自動積分された結果が表示されます。

ピークがうまく積分されていない場合は、次ページを参考に積分パラメータを変更後、Applyをクリックし、クロマトグラムに反映します。

※ パラメータは Results Table 作成後も変更できます。

[MQ4] Untitled Method		X
Workflow	For each component, configure the parameters to optimize peak integra	tion
Components	Algorithm: MQ4	Options 👻
Integration	251.2 / 108.2 Integration Area: 8	/ 92.0 (265.2 / 92.0) from 1 (curve_sulfa.wiff (sample 3) 348.248, Height: 1239.473, RT: 2.71 min
Library Soarsh	311.2 / 156.3 Apply peak parameters to all of the components	1200 - 2.71
Library Search	Minimum Peak Width 3 points	1000 -
Calculated Columns	Minimum Peak Height 100.00	800 -
Flagging Rules	Gaussian Smooth Width 1.0 points	600-
Advanced	Noise Percentage 40.0 %	400
	Baseline Subtract Window 2.00 min	200
Formula Finder	Peak Splitting 2 points	200 monor management
Non-targeted Peaks		0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
	Apply	Time, min
	Save	l 🗸 Close Help

 ⑥ チャンネル(成分)をクリックし、全成分についても同様に積分パラメータを設定、 確認します。

【スムージングおよび積分パラメータ】

- ・Gaussian Smooth Width:スムージングをかける場合、値を入力します。
- ・**Min. Peak Height**:ここで設定した高さ(Intensity, cps)を超えるピークを積分します。ベースラ インよりも高めに設定することで、ノイズや強度の低いピークは積分されなくなります。
- ・Noise Percentage: 値を大きくする程、ベースラインが上がり、ピーク面積値が小さくなります。
- Baseline Sub. Window:ベースラインとして設定する最小強度を検索する幅になります。Peak幅の2-3 倍程度が Default 値になります。

・Peak Splitting: 値を大きくする程、割れたピークを一つのピークとして認識しやすくなります。

- ⑦ Calculated Columns をクリックし、必要に応じて設定を行います。
 ※ 設定方法は中級定量トレーニングマニュアルをご参照ください。
- ⑧ Flagging Rules をクリックし、真度、定量値の許容誤差について設定します。
 - ※ 基準値から外れた場合、定量結果のセルがピンクにハイライトされます。
 - ※ 設定しない場合はチェックをはずします。
 - ※ イオン比の表示は、中級定量トレーニングマニュアルをご参照ください。

[MQ4] Untitled Method							
Workflow	Define a rule	e to flag results in the table.					
Components		,	Add Rule Delete Rule Import				
Integration	Apply Rule	Rule Name	Formulas or Columns Used in the Rule				
Library Search		Ion Ratio Accept ince	lon Ratio Confidence				
	\checkmark	Accuracy Acceptance	Accuracy				
Calculated Columns	\checkmark	Concentration Acceptance	Calculated Concentration				
Flagging Rules		Integration Acceptance	Quality, Asymmetry Factor, Total Width, Retention Time Error (%)				
Advanced		Qualitative Rules					

④ Accuracy Acceptance をクリックし、真度の許容誤差を設定します。設定が終わったら、Accept changes and return to Fragging Rules をクリックして戻ります。

[MQ4] Untitled Method	1								
Workflow	 Accept changes and return to Flagging Rules 								
Components	Identify the standards and QCs that are outside of the specifications								
Integration	Rule name Accuracy Acceptance								
Library Search	Maximum tolerance for accuracy:								
Calculated Columns	Standards at Lower Limit of Quantitation (LLOQ)	+/-	20.0	%					
Calculated Columns	✓ Standards	+/-	15.0	%					
Flagging Rules	Quality Controls (QC)	+/-	15.0	%					

① Calculated Acceptance をクリックし、必要に応じて定量値の許容誤差について設定します。Accept changes and return to Fragging Rules をクリックして戻ります。

Apply Rule	Rule Name	Formulas	or Columns Use
	Ion Ratio Acceptance	Ion Ratio Co	onfidence
✓	Accuracy Acceptance	Accuracy	
\checkmark	Concentration Acceptance	Calculated (Concentration
	Workflow Components Integration	· · · ·	← Accept change Identify the u Rule name Con
	Library Search		
	Calculated Co	lumns	> 251.2 / 10
	Flagging Rule		

- Save をクリックし、File Name に解析 Method 名を入力して Save をクリックします。
- Process New Results 画面に戻ります。Process をクリックすることで、解析が開始され、終了後 Result Table (解析結果) が表示されます。

6.6 Results Table の確認、編集

O - Analytics	Ĺ	3 🖄 🗌							D
			Broio	et. SCIEV OSOund D	Example	Projects 🔹	Results	• R.	2
Samples Components and Groups	[MQ4] Res	3Sam	ple Typ	be の選択					
Options 👻	<u>Ъ</u> 7	ows Filters: 0	🔽 Qualify	for Rules Filters	%	A A A	: "c 📰 il	∖ C _n H _n →	7
All Components	Index	Sample Name 🔽	Sample _▼ Type [•]	Component Name	Compound 7	7 IS Name 🖓	Component	Actual Concentration ▽	Area
⑦Analyta の選切	▶ 1	blank	Blank	251.2 / 108.2	Qua ④楞	摩準溶液の)濃度	N/A	44
②Analyte の選択	4	0.1	Standard	251.2 / 108.2	Qua			0.10	366
	7	1	Standard	251.2 / 108.2	Quantifiers	311.2 / 156.3		1.00	6115
All Analytes	10	10	Standard	251.2 / 108.2	Quantifiers	311.2 / 156.3		10.00	64125
251.2 / 108.2	13	100	Standard	251.2 / 108.2	Quantifiers	311.2 / 156.3		100.00	555144
265.2 / 92.0	16	Sample1	Unknown	251.2 / 108.2	Quantifiers	311.2 / 156.3		N/A	31872
	19	sample2	Unknown	251.2 / 108.2	Quantifiers	311.2 / 156.3		N/A	356285

- ① 解析結果を確認後、画面上部の Results > Save as で適当な名前で保存します。
- 左の Components and Groups タブのリストから、任意の Analyte (Training では 251/108)を選択します。
 - ※ Samples タブでは、任意のサンプルを選択できます。Results Table はサンプ ルごとに表示されます。

Samples Components and Groups [MQ4] Results Table (sulfa curve.qsession)	VQ4] Results Table (sulfa curve.qsession)									
Options A large A la	🔒 🛛 3 rows Filters: 0 📝 Qualify for Rules Filters									
blank 0.1 Index Sample Name V Sample v Component v Compound v 1 1 Index Sample Name V Sample v Index v Sample v	IS Name $ extsf{T} egin{array}{c} Component \\ Group Name \\ \hline \end{array} egin{array}{c} Actual \\ Concentration \\ \hline \end{array} egin{array}{c} Area \\ Area \end{array}$									
10 10 10 Standard 251.2 / 108.2 Quantifiers	311.2 / 156.3 10.00 63021									
11 10 Standard 265.2 / 92.0 Quantifiers	311.2 / 156.3 10.00 77560									
100 12 10 Standard 311.2 / 156.3 Internal Stan	N/A 1.00 13245									

- ③ Sample Type を確認、編集します。変更する場合はプルダウンメニューから、標準 液:Standard、QC サンプル:Quality Control、ブランク:Blank、サンプル:Unknown を選択してください。
- ④ Actual Concentration に標準液の濃度を確認、入力します。
 - ※ Training では 0.1、1、10、100 と入力してください。
 - ※ Excel などからのコピー (Ctrl+C)、ペースト (Ctrl+V) 可能です。
- ⑤ 全化合物について濃度を確認、入力します。
 - ※ 全化合物の濃度が同じ場合は入力後、カ ラム上を右クリックし、Apply Current Analyte's Actual Concentrations to All を選択します(この操作で標準液濃度が 全化合物に反映されます)。

Сору
Paste
Copy Entire Table
Fill Down
Select All Rows
Apply Current Analyte's Actual Concentrations to All
Apply Current IS's Actual Concentrations to All

O - Analytics	2 <mark>≥</mark>										<u> </u>	🕜 Offline	? = 8 >
					6)定日	いちょう ひんしょう ひんしょう ひんしょう ひんしょう しんしょう ひんしょう ひんしょう しんしょう しんしょ しんしょ	mple Projects	•	Results 👻 F	Reporting 🔹 💌	Views 👻	Process Method 👻 🗙
Samples Components and Groups	[MQ4] Peak Review (sulfa cu	nve.qsession)					티브						
Options 👻	7 rows Filters: 0	Qualify for Ru	les Filters			_			/oz	°c il C.H.	. 78 8	More	• 🗟 🗙
All Components	Index Sample Name	v Sample v Com Type v N	ponent _{Type} Compound	⊽ IS Name ⊽ Comp Group	onent v Actual Name Concentration	∀ Area ∀ ^R	rtention v Used Time	✓ Calculated Concentration ♥	ccuracy T				
All Internal Standards	1 blank	Blank 251.27	18.2 Quantifiers	311.2 / 156.3	N/A	N/A N	/A 💟	N/A	VA.				
311.2 / 156.3	4 0.1	Standard 251.2 /	18.2 Quantifiers	311.2 / 156.3	0.10	814 1	74 👿	0.10	1.54				
	7 1	Standard 251.2 /	188.2 Quantifiers	311.2 / 156.3	1.00	6115 1	71 🔽	1.02	12.41				
All Analytes	10 10	Standard 251.2 /	108.2 Quantifiers	311.2 / 156.3	10.00	63021 1	n 🔽	10.01	10.08				
251.2 / 108.2	13 100	Standard 251.2 /	188.2 Quantifiers	311.2 / 156.3	100.00	548132 1	70 🔽	99.97	3.97				
265.2 / 92.0	16 Sample1	Unknown 251.27	108.2 Quantifiers	311.2 / 156.3	N/A	31144 1	70 🔽	0.38	/A				
	19 sample2	Unknown 251.27	188.2 Quantifiers	311.2 / 156.3	N/A	356285 1	67 🔽	0.53	/A				
	A Manual Int	egration 😢	blank - 251.2 / 108. Area: N/A, Height 1000 7	2 (8iff), (sample Index: 1) N/A, RT: N/A min	0.1 - 251.2 / 108.2 (Sta Area: 814, Height 8.4134 1000 a	ff), (sample Index: ; 11, RT: 1.74 min) 1 - 2512 / 1 Area: 6115, 10	109.2 (Standiff), (Jampi Height: 6.199e2, RT: 1.7.	e Index 3) Lmin	16 - 2512 - 100 - 2 (Somethy) Area 63021, Height: 6.141e	E E 1 lew Completives: 4) 3, RT: 1/1 min	Options Options 100 - 251.2 / 108.2 (38aiff) Area: 54032, Height: 4.396 S000 -	(rample index 5)
	Minimum Peak Width	3 points	900		910 -		9	100		6100	1,708		1.703
	Minimum Peak Height	20.00	803		810			100		5000 -		41010	
	S/N Integration Threshol	d 1	701		710		,	1713		-	1		
	Gaussian Smooth Width	0.0 points	6(0)		610					4100 -		21010	
	Noise Percentage	40.0 %	4		1 I I I I I I I I I I I I I I I I I I I		Ago .			Apr		Age	
	Raseline Subtract Window	w 0.40 min	100 E		1010		Inter	1		3100 -		Inter	
	Dark Califica		401 -		410 -		4	100		2705		20000	
	Peak specting	2 points	300 -		310 -		3	100 -		2108			
	Retention Time (RT)		200 -		200 -	1.741	2	100		1000 -		1000	
	Expected RT	1.64 min	- III 100 h	util the state of the state of the	10 Minth	was Constant	n, '	" freemand	MMMM.		J		
	RT Half Window	30.0 sec		5 10 15 20 25	0.5 1.	0 1.5 2.0 2.5	i.0	0.5 1.0 1.5 2.0	2.5 3.0	0.5 1.0	1.5 2.0 2.5 3.0	0.5 1.0	15 2.0 2.5 3.0
	Update Expected RT	No 💙	×	Lime, min		rime, min		Time, mi		1	ume, min		urne, mith w

(6) サンプルの定量値が、Calculated Concentration に表示されます。

- 6.7 クロマトグラムの表示
 - Results Table 画面右上の
 トグラムを表示させます。
 - ② クロマトグラム右上の Options > Show navigation control を選択すると、
 日日 がクロマトグ ラム上部に表示されます。
 日日 をクリックすると、
 前後のページが表示されます。
 - ③ 必要に応じて、表示されているクロマトグラム数(縦、 横数)について、変更します。変更する場合は、クロ マトグラム右上の Options > Peak review display settings を選択します。Peak review Options 画面上 部の Number of rows、Number of columns で変更 後、OK をクリックしてください。

6.8 パラメータの変更

- 必要に応じてクロマトグラム左に表示されているパ ラメータ値を変更し、クロマトグラムのピーク認識 方法を変更します。
 - ※ 各パラメータの詳細については、P6-7【スムー ジングおよび積分パラメータ】を参照ください。
- 変更後 Apply をクリックすると、選択したサンプル ピークに変更したパラメータが反映されます。
 - ※ 全サンプルピークにパラメータを反映させる場合は次ページを参照ください。

Update Expected RT

Report Largest Peak

- ・ 選択したサンプルに値を反映させた
 後、クロマトグラム上を右クリックし
 ます。
- Update Processing Method for Component を選択します。

6.9 手動積分

※ 必要に応じて行います。

- クロマトグラム画面上部の
 A をクリックします。
- ピークの左端をクリックします。
- そのままドラックしてピー クの右端で離します。

※ もとのパラメータに
 戻す場合は Manual Integration 右横のチェックを外してください。

ピークとしての認識を外す

ブランク等、ピークとして認識したくない場合、ピーク不検出アイコンを押すことに より、ピークを不検出にします。

- 6.10 検量線の表示、重みづけ、検量線の種類を変更
- ① Results Table 画面右上の 🗾 をクリックし、検量線を表示します。
- ② 必要に応じて Regression をクリックし、重みづけや検量線の種類を変更します。

									JULEA USQUOU	0.919 019	ample Hojeus			 Nepc 		 VRMS 		
[MQ4] (alibration (sulfa	urve.qsession)																
Ъ	🔓 7 rows Filters: 0 🖉 Qualify for Rules Filters 🛛 🖉 Qualify for Rules Filters													×e				
Inde	Sample Nam	e V Sample Type 1	Component Name	Compound Type	7 IS Name	v Component Group Name	Actual V Concentration	Area	v Retention v	r Used V	Calculated Concentration	▼ Accuracy ▼				C		
	black	Blank	25127182	Oupotifiers	311.2 / 156.3	_	N/A	N/A	N/A	122	H/A	N/A						
4	0.1	Standard	2512/1082	Quantifiero	311.27156.3		0.10	814	174	2	9.10	97.54						
7	1	Standard	251.2 / 188.2	Quantifiers	311.2 / 156.3		1.00	6115	1.71	2	1.02	102.41						
10	10	Standard	251.2 / 188.2	Quantifiers	311.2 / 156.3		10.00	63021	171	1	10.01	100.08						
13	100	Standard	251.2 / 108.2	Quantifiers	311.27156.3		100.00	548132	170	7	59.97	99.97						
16	Sample1	Unknown	251.2 / 188.2	Quantifiers	311.2 / 156.3		N/A	31144	1.70	1	0.30	N/A						
19	sample2	Unknown	251.2 / 108.2	Quantifiers	311.2 / 156.3		N/A	356285	1.67	7	0.53	N/A						
																Regr	ession	Op
Calibrat	ion for 251.2 / 11	32: y = 0.47379 × + 0	.01638 (r = 1.00010,	r ² = 0.39393) (or	eighting: 1 / s)											Regr	ession	Ор
Calibrat	ion for 251.2 / 1/	32: y = 0.47379 × + 0	.01638 (r = 1.00010,	r ² = 0.99990) (ov	eighting: 1 / 1)											Regt	ession	Op
Calibrat	ion for 251.2 / 10	32: y = 0.47379 × + 0	.01638 (r = 1.00010,	r ² = 0.99990) (ov	eighting: 1 / s)								_			Regr	ession	Op
Calibrat	ion for 251.2 / 10 45 40	8.21 y = 0.47379 x + 0	.01638 (r = 1.00010,	r ² = 0.39999) (or	eighting: 1 / 1)											Regn	ession	Op
Calibrat	ion for 251.2 / 10 45 40 35	3.2: y = 0.47379 x + 0	01678 (r = 1.00010,	r ² = 0.39999) (ov	eighting: 1 / x)			_								Regr	ession.	or
Calibrat	ion for 251.2 / 10 45 40 35 30	8.21 y = 0.47378 x + 0	.01638 (r = 1.00010,	r ² = 0.39999) (or	eighting: 1 / x)			_								Regr	ession.	Of
Calibrat	ion for 251.2 / 10 45 40 35 30 25	821 y = 0.47378 x + 0	.01638 (r = 1.00000,	r ² = 0.39999) (or	eighting: 1 / x)											Regr	ession.	or
Calibrat	en for 251.2 / 11 45 40 35 30 25	821 y = 0.47379 x + 0	.01639 (r = 1.00010,	r ² = 0.39399) (ov	eighting: 1 / v)											Regr	ession.	Or
Calibrat Calibrat	en for 251.2 / 11 45 46 35 36 25 20	3.2: y = 0.47379 x + 0	01638 (r = 1.00010,	r ² = 0.39999) (or	tighting: 1 / 3)											Regr	ession.	or
Calibrat openy eary	en for 251.2 / 11 45 46 35 30 25 20 15	3.21 y = 0.47379 x + 0	d1678 (r = 100010,	² = 0.39193) (ov	righting: 1 / v)											Regt	ession.	Or
Calibrat openy sary	en for 251.2 / 11 45 40 33 30 25 20 15 10	121 y = 0.47379 x + 0	A1678 (r = 1.00000,	r ² = 0.39990) (or	eighting: 1 / v)											Regr	ession	Op
Calibrat cipy say	en for 251.2 / 11 45 40 35 30 25 26 15 10 5	1.2; y = 0.47379 x + (41639 (r = 1.00010,	r ² = 0.39999) (ov	tighting: 1 / v)											Regr	ession	Opt
Calibrat openy early	en for 251.2 / 11 45 46 35 36 25 26 15 16 5	12) y = 0.47379 × + (d1539 (r = 10000),	² = 0.39993) (or	tighting: 1 / x)											Regt	ession.	Opt
Calibrat qay say	en for 251.2 / 11 45 46 35 30 25 20 15 10 5 0	5 11	A16730 (r = 1.00000, 115	r ² = 0.39990) (ov	righting: 1 / 2)	10 35	4	45	50		55 99	65	70	75	10	Regr	ession.	Op

- Regression Parameter : Area→Hight の変更
- Regression Type: 検量線の種類の変更
- Weighting Type: 重みづけの変更

- ※ Training では上記のように変更してください。
- ※ 操作詳細は Help をご参照ください。
- ③ 必要に応じて画面上部の Results > Save as で定量結果を保存します。

6.11 データの追加と削除

データの追加

- Results Table 画面右上の More > Add Samples を選択し、Available で追加したい サンプルを選択後、→で Selected に移動します。
- ② OK をクリックすることで Results Table に追加されます。

	<u>V</u>	🕜 Offline	? = 🖻 ×	Select Samples	
ng Area N/A 411 6115 63021 548132 31144 356285	 Rein N/ 1.7 1.7 1.7 1.7 1.6 	Views Process Me More Table display settings Recent Table Settings Add custom column Rename custom column Hide selected row(s) Show previously hir den row(s) Add samples Remove selected samples Set 'Used'		Select the desired samples Current Location: D:\SCIEX OS Data\SCIEX OS_Quad Data_Example\Data Available Available Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Selected Sel	
				OK Cancel	

<u>データの削除</u>

- Results Table で削除したい行を選択し、Results Table 画面右上の More > Remove Selected Samples を選択することで削除されます。
 - ※ 削除後、元に戻すことはできません。必要に応じて削除前に画面上部の Results >Save as で定量結果を保存してください。

6.12 Report の作成

- ① 画面上部の Reporting > Crate report and save Results Table を選択します。
- ② Create Report 画面が表示されますので、Template Name のプルダウンで目的に 沿ったレポートテンプレートを選択します。
 - ※ Default の Template は C:¥ProgramData¥SCIEX¥Analytics¥Reporter に保 存されています。
 - ※ その他、<u>https://sciex.jp/support-tools/analyst-multiquant-reporttemplate</u> からダウンロード可能です。
- ③ Report title の Browse をクリックしてファイル名の入力と保存先を選択します。
- ④ Create をクリックするとレポートが作成されます。

		0	Offlin	e	Create Report		X
1	Reporting	• Views	•		Generate a report usi	ng a predefined template and specified logo Template View	
<mark>4,</mark> ual tra	Create repo Export result Export Mark Transfer res Print 411	rt and save Res serView Peaks I ults to LIMS 1.72	ist	alk nct	Template name 2	Calibration Curve	
					Report format Report title	Word PDF CSV HTML Calibration Curve_Report_2018_05_17_165643 Create an individual report for each sample (Recommended for large reports; Report titles will be appended with sample reference) Create Close Close	

Adapting Adapting (2010): 128 (5/3) 201 mt Adapting Adapting (2010): 128 (5/3) 201 mt Adapting (101 mt) Apparition (2014): 129 (2017): 123 (5/4) Adapting (101 mt) 1 Apparition (2014): 129 (2017): 123 (5/4) Adapting (101 mt) 1 Apparition (101 mt) 100 mt) 1 1 Apparition (101 mt) 1 1 1 Apparition (101 mt) 1 1 1 Apparition (101 mt) 1 1 1 1 Apparition (101 mt) 1 1 1 1 1 Apparting (101 mt) 1	5000 Bank RT (Exp. RT): 8.48 (8.58) min	Created with Artaly Printed: 18/05/2018 1	st Reporter : :0526 AM	
Sample Name Sample Area (opt) Area (opt) RT (rein) park Type Sample Area (opt) Sample Area (opt) (rein) park Strongeo Sample Area (opt) 5.45 5.67 STO_100(opt) Sample Area (opt) Sample Area (opt) 5.67	Bank RT (Exp. RT): 8.48 (8.58) min	16		
10.1 2000 <th< th=""><th>Exclusion • • 0 ppi and and and and and and and and and and</th><th></th><th>TOD SHOT ST (SH) TOD SHOT ST (SH) TOD SHOT ST (SH) Calcular ST (SH) Calcular ST (SH) Calcular ST (SH) TOD SHOT ST (SH) Calcular SHOT TOD SHOT SHO SHOT<th>$\begin{array}{c} Contrast with Party Large of the second se$</th></th></th<>	Exclusion • • 0 ppi and and and and and and and and and and		TOD SHOT ST (SH) TOD SHOT ST (SH) TOD SHOT ST (SH) Calcular ST (SH) Calcular ST (SH) Calcular ST (SH) TOD SHOT ST (SH) Calcular SHOT TOD SHOT SHO SHOT <th>$\begin{array}{c} Contrast with Party Large of the second se$</th>	$\begin{array}{c} Contrast with Party Large of the second se$

研究用にのみ使用できます。診断目的およびその手続き上での使用は出来ません。

AB Sciex is doing business as SCIEX.

For Research Use Only. Not for use in diagnostic procedures.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.

AB SCIEX[™] is being used under license.

詳細な説明や知的所有権等に関しては付属のマニュアルを必ずご確認ください。

© 2019 K.K. AB SCIEX.